
Identification of Communities With
Multi-Semantics via Bayesian Generative Model

Dongxiao He , Yanli Wu , Youyou Wang , Zhizhi Yu , Zhiyong Feng ,

Xiaobao Wang , and Yuxiao Huang

Abstract—Discovering communities is an essential step in the analysis of complex systems, and it has two purposes: to identify

functional modules and to interpret semantics. However, most of the existing community detection methods only focused on identify

communities, while learning the semantics interpretation of communities has not been fully studied. In this paper, we focused on the

problem of identifying communities and learning the semantics interpretation of modules jointly in an end-to-end model. We designed a

novel generative model which combines two closely related parts, one for community discovery and the other for content clustering and

semantics interpretation. By extracting the potential correlation between these two parts, our new method is not only robust to

discovering communities, but also able to provide a community with more than one semantic topic. As for model inference, we

developed a variational algorithm from a Bayesian point of view. Experimental results on the artificial benchmark and real networks

showed the superior performance of the proposed approach over existing methods in terms of effectiveness and efficiency. We also

analyzed semantic interpretability of community detection results through a case study over a large-scale music platform dataset.

Index Terms—Network analysis, community detection, semantic description, bayesian model, variational inference
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1 INTRODUCTION

COMPLEX systems can often be modeled in the form of net-
works, including social networks, communication net-

works and biological networks. Networks are a powerful
analytic and representation tool for gaining deep insights
into the nature and function of complex systems, and can
well model the interaction relationships between units of
such various systems. In particular, community structure,
which reveals the fundamental functional modules of a net-
work, plays a very important role in the network. Identifica-
tion and analysis of communities help comprehend how the
network is organized and how individual modules function.
Besides, since the nodes in the network often carry various
forms of characteristic information, it is equally important to
provide the semantic explanation for communities to better
understand the innate character of communities.

Many algorithms for community detection have been
proposed, a majority of which focus on network topology.
They include heuristic methods [1], modularity optimiza-
tion [2], spectral algorithms [3], statistical inference [4], [49]

and label propagation [5]. In addition to the network topol-
ogy, the nodes in the network are usually associated with a
series of contents (especially node attributes). Node con-
tents, which provide semantic information about nodes and
underlying network, can capture deep knowledge of the
nature of communities and are orthogonal and complemen-
tary to structural information. Structural information may
be compensated by content information, and vice versa.
Thus, using both of structural and content information may
improve the performance of community detection. Some
methods utilizing these two types of information have been
proposed in recent years. These include heuristic optimiza-
tion (multi-objective) [6], non-negative matrix factorization
(NMF) [7], Bayesianmodel [8] and deep learning basedmeth-
ods (e.g., methods based on the auto-encoder [9], the genera-
tive adversarial [10] and the graph convolution [11], [51]).

However, these existing methods usually only discover
communities while ignore to reveal the reason for commu-
nity formation and give the semantics interpretation of
communities. Semantics descriptions can help explain
why certain nodes belong to a community, and further
help reveal the functions or characteristics of communities.
Recently, some methods to identify communities and
derive descriptions have been proposed. For example,
Communities from Edge Structure and Node Attributes
(CESNA) [12] modeled the interaction between the net-
work structure and the node attributes, and helps with the
interpretation of detected communities by finding relevant
node attributes for each community. Semantic Community
Identification (SCI) [13] designed a NMF model with two
sets of parameters, the community membership matrix
and community attribute matrix, to improve the efficiency
of community detection and provide semantic interpreta-
tion for communities.
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However, these developed methods have at least three
serious problems. First, they are based on the assumption
that community memberships of nodes are shared by net-
work structures and node contents. In other words, struc-
tural information of communities matches the content
information of topic clusters. In fact, there are many cases
that reflect mismatches between them in real networks. For
example, the social relationships in Twitter usually reflect
user groups directly, while users may generate messages of
diverse contents, so that contents and community structures
may not align at all [14]. In such cases, these methods may
lack the required robustness and perform poorly. Second,
they assume one topic per community, an assumption that
usually does not hold in reality. In social networks, for
example, even users in the same group tend to express their
opinions on more than one topic, and thus, a community
should preferably include multiple topics. Focusing on one
topic for a community limits the applicability of the existing
methods. Third, the existing methods handle topologies
and node contents separately. As a result, they need to bal-
ance the effects of the two on community detection, which
cannot be easily achieved.

In order to solve the above problems, we introduce a
Bayesian generative model for jointly identifying communi-
ties and deriving their semantic description at the same
time. The model contains two closely related parts, one for
community discovering and the other for content clustering
and semantics interpretation. Meanwhile, the model also
characterizes the hidden association between these two
parts, in order to accurately discover the community struc-
ture and learn the semantic explanation for these communi-
ties. To train the model, we developed a variational
algorithm based on Bayesian variational expectation maxi-
mization [15], which transforms the model inference into
the problem of maximum a posteriori (MAP). The experi-
ment results on an artificial benchmark and 10 real-world
network data sets show the superiority of our methods by
comparing with 10 state-of-the-art algorithms. A case study
is also presented to illustrate the community semantic inter-
pretation ability of our model.

2. RELATED WORK

Over the past few decades, a considerable number of com-
munity detection algorithms have emerged. Traditional
methods often focus on the network topology to divide
communities. These methods are based on different theories
and strategies, including heuristic methods [1], modularity
optimization [2], spectral algorithms [3], dynamic algo-
rithms [16], non-negative matrix factorization [17], statistical
inference methods [4] and label propagation [5]. Fortunato
comprehensively reviewed typical community detection
methods to date in his survey [18].

However, in recent years, increasing interest revolves
around the content information in networks, especially the
attributes of the nodes, as nodes with similar attributes are
more likely to be assigned to the same community. In order
to fuse content information into community discovery
methods, existing works often utilize sophisticated topic
modeling techniques which originated in the field of text
analysis, such as the Correlated Topic Model (CTM) [19]

and the Link-PLSA-LDA model [20]. The combination of
network topology and node content is a trend in community
discovery algorithms nowadays, and a comprehensive
review can be seen in Jin et al. [42] and Su et al. [43]. The
advantage of doing so is twofold:

1) The semantics obtained from the content information
can capture in-depth features about the nature of
communities and help to compensate for noisy net-
work topology, thereby improving the performance
of community detection. For instance, GenClus [21]
clustered general heterogeneous information net-
works with different link types and different attri-
bute types. The authors assumed that different types
of links may exhibit different levels of semantic
importance, therefore, the strengths for different
typed links were learned in the model to enhance the
clustering results. The Bayesian Attributed Graph
Clustering (BAGC) model [8] was developed for
unweighted attributed graphs with categorical
attributes. It was a Bayesian generative model which
leverages the structural and attribute information in
the clustering process. The PME [47] model intro-
duced distinct latent spaces to model objects and
relations. It first projected vertices from object space
to corresponding relation space and then calculated
the proximity between projected vertices to capture
both first-order and second-order proximities in a
unified way. The ANGM [48] model used neural net-
works to depict the nonlinearity between the node
embeddings and the node attributes. To combine the
topology information and the attribute information,
the model assumed that nodes in the same blocks
share similar embeddings and similar linkage pat-
terns. NMTF (nonnegative matrix tri-factorization)
[7] was a community detection method which seam-
lessly integrated social relations and node contents
in the user-word-message tripartite graph. It utilized
three types of graph regularization to explicitly cap-
ture user similarity, message similarity, and user
interaction. Furthermore, as more complex network
problems were tackled, it became difficult for these
approaches to perform data fusion effectively on
data of very high dimensions and diverse properties.
Lately, the technique of deep learning was adopted
to handle the high dimensional network data and
learn low-dimensional representation of nodes, so as
to effectively discover communities. Chen et al. [11]
presented a novel data-driven method for super-
vised community detection using graph neural net-
works. It employs a family of graph operators such
as the power graph adjacency matrices, and the line
graph equipped with the non-backtracking matrix to
achieve good performance on real-world datasets.
MRFasGCN [44] combined the GCN and MRF meth-
ods for semi-supervised community detection on
attribute networks. It added unary potentials and
content information, and reparameterized the MRF
model to make it suitable for the GCN architecture
to find better communities. He et al. [22] designed
a new GCN approach using the framework of
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autoencoder that casts MRFasGCN as encoder and
exploit a community-centric dual encoder to recon-
struct network structure and attributes separately, to
address the unsupervised community detection. Sun
et al. [23] devised a probabilistic generative model, i.e.,
vGraph, which represents each node by a mixture of
communities and defines each community as a multi-
nomial distribution over nodes, to jointly deal with
overlapping (and non-overlapping) community detec-
tion and learn node (and community) embeddings.

2) It provides the possibility of discovering semantic
communities, meaning semantic interpretation for
each community. By finding topics that reflect the
interests or functions of the communities, the value
of network data is emphasized. For example, Latent
Community Topic Analysis (LCTA) [24] incorpo-
rated community detection into the topic modeling
(in the text-associated graphs) so that users in the
same community will share common potential
topics. Topics were generated from communities in
the method, so it captured the topical coherence in
the community level and one community can corre-
spond to multiple topics, and multiple communities
can share the same topic. DCM [25] defined and
studied the problem of finding cohesive communi-
ties with concise descriptions in the attribute space,
based on the “homophily” assumption in the social
network. The algorithm alternated between two
phases: a hill-climbing phase for generating commu-
nities, and a description induction phase using tech-
niques from supervised pattern set mining. The POT
[49] model modeled people’s network structure,
topic distribution, and sentiment in a unified way to
jointly study more interpretable communities and
opinion mining. The SPTF [50] model learnd a latent
vector representation for each user, item and behav-
ior type so as to precisely predict semantic-aware
user behaviors. It also proposed an adaptive rank-
ing-based positive sampling approach to handle the
issue of the heavy skewness of the behavior data dis-
tribution and a negative sampling technique to opti-
mize SPTF. BTLSC [45] modeled the network
topology by assuming that nodes within the same
community have the same link pattern when
connecting with the rest of the network. It used

background topic to reflect the commonality of the
whole network, and described the semantic contents
by distinguishing the general and specialized topics of
words. As a result, this method used node attributes
to improve the efficiency of community detection and
provided semantic interpretation for communities.

Though those methods can improve the performance of
community detection to some extent, they still have several
major problems. That is, most methods that incorporate
topology and content have not considered the issue of mis-
match between the topology and the content. They tend to
assume that these two parts share the community member-
ship of the nodes, so they cannot trivially adapt to other
suboptimal situations. Moreover, these methods assume
that a community has only one topic, which may not be the
case in actual social networks. In contrast, the method pro-
posed in this paper establishes a general framework for
community detection in attributed networks. It inherits the
idea in our previous conference paper [26] but extends the
scope of generalization ability of the model. In the mode of
statistical inference, our unified model uses more prior
knowledge of model parameters and improves the perfor-
mance of the model based on the Bayesian theory, making
this new model more flexible to deal with the above prob-
lems of previous methods.

3 THE BAYESIAN MODEL

In this section, we first introduce the basic concepts and
mathematical notations of the proposed model, and then
present the integral model. Finally, we describe in detail the
generative process of the model.

3.1 Notions and Notations

For an attributed network, the network topological structure
is described as an adjacency matrix A … (aij)n�n, where aij …
1 if an edge exists between nodes vi and vj, or 0 otherwise.
Node contents can be denoted by an attribute matrix X …
(xik)n�m, where xik … 1 if node vi has the kth attribute wk, or 0
otherwise. Table 1 summarizes the notations of some impor-
tant parameters in the paper.

Given an attributed network G, the number of communi-
ties c and the number of topics k, our objective is twofold: 1)
dividing nodes into c communities and k content clusters
separately, and 2) seeking the best correlation between the

TABLE 1
Notations Used in the Model

Sets Sign Description

Observed quantities A Adjacency matrix
X Attribute matrix

Latent quantities zi Community assignment of node vi
gik Topic assignment of node-attribute pair < vi, wk >

Model parameters with prior pr Probability that a node belongs to rth community
urs Probability that rth community connects sth community
hrs Probability that a node is assigned to sth topic given that the node belongs to rth

community
Model parameters without
prior

bsk Probability that sth topic generates kth attribute

Hyper-parameters �,a,
m,n

Acting as priors of the corresponding model parameters with conjugate distributions
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two, so as to use the semantics in the content clusters to
annotate communities. Our method can deal with cases
where the numbers of communities and topical clusters are
different, i.e., k 6… c. Nevertheless, for clarity and simplicity,
we focus on the case of k … c.

3.2 Model Definition

To achieve the above objectives, we present a novel Bayes-
ian probabilistic model, i.e., Identification of Communities
with Multi-Semantics (ICMS). A compact graphical repre-
sentation of the model is depicted in Fig. 1. As shown, the
right part of the model (blue box) generates the topological
structure in the attribute network based on the community
partitions and the connection probabilities between commu-
nities. The left part (green box) generates the observed node
contents, which describes the semantics of network con-
tents. Among them, the upper left part (red box) is a transi-
tion component, where the latent correlation matrix H acts
as a bridge between network topology and node contents,
which is crucial in our model. It associates community
memberships of nodes with clusters of attributes, which can
not only reflect the matching degree between communities
and content clusters, but also uniformly adjust the model
according to the degree of noise in the observation. In gen-
eral, the new method is not only robust to discover commu-
nities, but also be able to provide a community with more
than one semantic topics.

3.3 Generative Process

As described in the previous section, we design the model
to fit the known observed quantities via adjusting hidden
variables and model parameters. The generative process
can be summarized in following steps:

1. Choose pr � Dirichlet (�).
2. For each community r 2 {1, 2, . . ., c}:

a) For each community s with s � r: Choose urs �
Beta (m,n).

b) Choose hr � Dirichlet (a).
3. For each node vi with i 2 {1, 2, . . ., n}:

a) Choose community assignment zi � Multinomial
(p).

b) For each node vj with j > i: Choose edge aij � Ber-
noulli (uzi,zj).

c) For each attribute wk 2 {1, 2, . . ., m}:
i. Choose topic assignment gik � Multinomial

(hzi).
ii. Choose attribute xik �Multinomial (bgik,k).

To explain the generative process in details, we first dis-
cuss Steps 1 and 2 (which generate model parameters that

have prior distributions) in Section 3.3.1. The core step of
this generative process is Step 3 (which generate latent and
observed quantities). We will cover this step in Section 3.3.2.

3.3.1 Generating Model Parameters With Prior
Instead of setting a fixed initial value for each model param-
eter, we take a Bayesian treatment on the model generation
process which makes the model better handle overfitting.
Model parameters p, Q and H are treated as random varia-
bles and placed prior distributions by hyper-parameters.
Here hyper-parameters include �, a, m and n, which are
assumed to be given first and fixed to predetermined val-
ues. Note that, we do not put a prior distribution on B,
which corresponds to the empirical Bayesian approach in
Blei’s LDAmodel [27].

1. We adopt a Dirichlet distribution to generate p (Step
1), where p is the key parameter to generate the com-
munity assignment zi. The density function is
defined as:

p pj�ð Þ …
Gð
Pc

r…1 �rÞQc
r…1 G �rð Þ

Yc

r…1
p�r�1

r ; (1)

where G(�) is the Gamma function. The hyper-param-
eter � … (j1, j2, . . ., jc) is a c-dimensional real vector.

2. We place a Beta distribution over urs (Step 2(a)),
where urs is the parameter of Bernoulli distribution
used to generate edge aij, defined as:

p ursjm; nð Þ …
G mrs þ nrsð Þ
G mrsð ÞG nrsð Þ

urs
mrs�1 1� ursð Þnrs�1 (2)

Here m, n are two hyper-parameters of the model
parameter urs. They have the same mathematical
form and appear in pairs.

3. We also use a Dirichlet distribution to generate
parameter hrs (Step 2(b)), which is the prior of the
Multinomial distribution to generate topic assign-
ment gik. The density function is defined as:

p hrsjað Þ …
G
Pc

s…1 ars
� �
Qc

s…1 G arsð Þ

Yc

s…1
hars�1

rs (3)

Similar to �, the hyper-parameter of hrs is a c-
dimensional real vector a … (a1, a2, . . ., ac), and all
communities share the same a.

3.3.2 Generating Latent and Observed Quantities
To complete the generative process, next we use model
parameters to specify the latent and observed quantities
required by Step 3. We assume that model parameters p, Q,
H and B are given in the following generative process.

1. The community assignment zi for each node vi is
described by a Multinomial distribution (Step 3(a)),
which is defined as:

p zi…rjpð Þ … pr (4)

The distribution is parameterized by the c-vector

Fig. 1. A graphical representation of the joint generative model ICMS.
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p … (p1, p2, . . ., pc), and it is sampled from the conju-
gate prior distribution described above step. pr satis-
fies the constraints pr 2 [0,1] and

Pc
r…1 pr … 1.

2. Given the community assignment zi and zj for a node
pair vi and vj, we then sample the edge aij between
nodes vi and vj from a Bernoulli distribution (Step 3
(b)), which is a binary variable with a value of 0 or 1.
The Bernoulli distribution is defined as follows:

p aijjuzi;zj

� �
… uzi;zj

aij 1� uzi;zj

� �1�aij
(5)

The parameter Q … (urs)c�c is a symmetric matrix,
where urs … p(zi … r, zj … s) and satisfies uzi,zj 2 [0,1]
and uzi,zj … uzj,zi. Similarly, we have already intro-
duced how to use hyperparameter m and n to gener-
ate model parameters u.

3. Given the community assignment zi for node vi, we
generate the topic assignment gik for its kth attribute
xik (Step 3(c.i)). It is sampled from a Multinomial dis-
tribution, which is defined as:

p gikjhzi

� �
… hzi;gik (6)

Each row of the parameter hzi is the topic distribu-
tion over community zi. H can be also taken as a
probabilistic transition matrix from communities to
topics, where the element hzi,gik satisfies hzi,gik 2 [0,1]
and

Pc
gik…1 hzi;gik … 1. When the communities and

content clusters match well, H will be represented as
a one-hot vector matrix. At this time, we can inter-
pret communities with topics derived from corre-
sponding content clusters. When the communities
and content clusters do not match well, the values of
elements in the matrix imply the degree of mis-
match, and we can still use H to improve the perfor-
mance of community discovery. In the extreme case
where the communities and content clusters do not
match at all, H will be nearly homogenous, and we
may ignore the contents and return communities as
the only result. In addition, H can also deal with the
degree of noise of observed quantities. In the case
where the contents are too noisy to be clustered, the
fitting of the network topology will be dominant in
the model. Likewise, when the network topology has
a poor structure, the fitting of contents will be the
main factor affecting the model performance. (We
have also validated the above claims in the following
experiments.)

4. Finally, generate the attribute wk of the given node vi
(i.e., the node-attribute pair xik) from a Multinomial
distribution (Step 3(c.ii)), which is defined as:

p xikjbgik

� �
… bgik;k (7)

The parameter B … (bsk)c�m, where bsk … p(xik … 1
j gik … s) is the probability that a node in the sth con-
tent cluster has the attribute wk (independent of
node vi), which satisfies the constraints bgik,k 2 [0,1]
and

Pm
k…1 bgik;k … 1.

3.4 THE JOINT DISTRIBUTION

In essence, the above generative process of parameters is to
draw samples from the potential joint probability distribu-
tion over A, X, z, g, p, H and Q. Given the hyper-parameters
�, a, m, n and the model parameter B, we decompose the
joint probability distribution based on the assumption of
conditional independence, as follows:

p A; X; z; g; p; H; QjB; �; a; m; nð Þ

…
p pj�ð Þp Qjm; nð Þp Hjað Þp zjpð Þ
�p AjQ; zð Þp gjH; zð Þp XjB; gð Þ

� �
;

(8)

where

p Qjm; nð Þ …
Y

r�s
p ursjmrs; nrsð Þ;

p Hjað Þ …
Yc

r…1
p hrjað Þ;

p zjpð Þ …
Yn

i…1
p zijpð Þ;

p AjQ; zð Þ …
Y

i < j
r;sp aijjurs
� �zir;zjs ;

p gjH; zð Þ …
Yn

i…1

Ym

k…1
p gikjhzi;gik

� �xik
;

p XjB; gð Þ …
Yn

i…1

Ym

k…1
p xikjbgik;k

� �
;

and these sub functions have elaborated in (1)–(7),
respectively.

It can be seen that through the latent correlation matrix
H, communities and topics are linked together. Therefore,
unlike some existing methods, our model does not need
additional variables to balance the impacts of communities
and topics. Instead, this correlation matrix will be trained
with other model parameters that we will discuss in the
next section. For simplicity, hereafter we will omit the con-
dition in the probability formula p(A, X, z, g, p, H, Q j B, �,
a, m, n) and abbreviate it as p(A, X, z, g, p, H, Q).

4 MODEL INFERENCE

We give an efficient variational Bayesian inference algo-
rithm to train the model. Section 4.1 shows the basic theory
of the model inference. Section 4.2 elaborates how to opti-
mize the variational parameters. Section 4.3 summarizes the
whole variational algorithm. The computational complexity
is discussed in Section 4.4.

4.1 Variational Distributions

Under the Bayesian probabilistic framework, the training of
the parameters in the model can be seen as a standard prob-
abilistic inference problem, that is, solving the maximum a
posteriori (MAP) [28] of latent quantities with respect to
observed quantities:

z	; g	 … arg max
z;g

p z; gjA; XÞ;ð (9)

where z	 and g	 are the values which give the most probable
clustering results on the adjacency matrix A and attributes
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matrix X. The probability p(z, g j A, X) is the posterior dis-
tribution of hidden variables z and g given the known
matrices A and X (and model parameters), defined as:

p z; gjA; Xð Þ …
ZZZ

pðz; g; p; H; QjA; XÞdpdHdQ; (10)

where

p z; g; p; H; QjA; Xð Þ …
p A; X; z; g; p; H; Qð ÞP

z;g
RRR

p A; X; z; g; p; H; Qð ÞdpdHdQ

(11)

Due to the integrals over parameters p, H and Q, it is dif-
ficult to give the exact inference of the posterior distribution
in (10). Therefore, we designed an efficient variational infer-
ence algorithm to approximate the posterior. According to
the theory of variational optimization, we approximate the
true posterior distribution p(z, g jA, X) by a new variational
distribution function q, which can be defined and factorized
as:

q z; g; p; H; Qð Þ…qðzÞqðgÞqðpÞqðHÞqðQÞ (12)

Then we need to restrict the family of variational distri-
butions as:

q z; g; p; H; Qj~P; ~F; ~�; ~A; ~M; ~N
� �

… q zj~F
� �

q gj~P
� �

q pj~�
� �

q Hj~A
� �

q Qj ~M; ~N
� �

…

Qn
i…1 q zij~’ið Þ

Qn
i…1
Qm

k…1 q gikj~rik;s
� �

�q pj~�
� �Qc

r…1 q hrj~arð Þ
Q

r�s q ursj~mrs; ~nrsð Þ

 !

:

(13)

The parametric forms of sub distributions in (13) are
exactly the same as those of the probability functions in Sec-
tion 3.3 (Detailed definitions of these sub distributions are
given in Appendix B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TBDATA.2021.3131707), where

q zij~’ið Þ …Multinomial ~’ið Þ;
q gikj~rik;s
� �

…Multinomial ~rik;s
� �

;

q pj~�
� �

… Dirichlet ~�r
� �

;
q hrj~arð Þ … Dirichlet ~arð Þ;

q ursj~mrs; ~nrsð Þ … Beta ~mrs; ~nrsð Þ:

Here ~P, ~F, ~�, ~A, ~M, ~N are the variational parameters. While
the hyper-parameters are set to fixed values throughout the
optimization process, variational parameters can be freely
changed. Moreover, each instantiation of variational param-
eters will specify a unique distribution in the distribution
family. Our purpose is to seek the optimal parameters, so as
to find the best distribution closest to the true posterior p(z,
g j A, X) as the approximation. Again for brevity, we will
omit the conditions (namely variational parameters) of the q
(�) distributions in the following inference.

4.2 Optimizing Variational Parameters

The purpose of the model inference procedure is to find the
specific variational distribution as close as possible to the
true posterior distribution. This is equivalent to minimizing
the distance between the variational distribution and the
true posterior distribution with respect to optimal varia-
tional parameters. We adopt the Kullback-Leibler (KL)
divergence [28] to measure the distance, which is defined as:

KL qjjpð Þ …

X

z;g

ZZZ
q z; g; p; H; Qð Þ

� log
q z; g; p; H; Qð Þ

p z; g; p; H; QjA; Xð Þ
dpdHdQ

8
>>><

>>>:

9
>>>=

>>>;
:

(14)

Algorithm 1. Iterative Optimization Procedure

Input: A, X, a threshold e, the maximum number of iterations
nmax

Output: ~P; ~F; ~�; ~A; ~M; ~N; B
1. Initialize variational parameters randomly
2. n 0
3. repeat:
(a) given ~PðnÞ; ~FðnÞ , update ~�ðnþ1Þ; ~Aðnþ1Þ; ~Mðnþ1Þ; ~Nðnþ1Þ; Bðnþ1Þ

according to (18)–(24)
(b) given ~�ðnþ1Þ; ~Aðnþ1Þ; ~Mðnþ1Þ; ~Nðnþ1Þ; Bðnþ1Þ, update ~Pðnþ1Þ

,~Fðnþ1Þ according to (16)–(17)
(c) compute ~LðqðnÞÞ
(d) n nþ1
until ~LðqðnÞÞ � ~Lðqðn�1ÞÞ< e, or n > nmax

4. return ~PðnÞ; ~FðnÞ; ~�ðnÞ; ~AðnÞ; ~MðnÞ; ~NðnÞ; BðnÞ

The goal is to find the optimal variational parameters
that minimize the KL divergence, that is, choose a q(z, g, p,
H, Q) that approaches p(z, g, p, H, Q jA,X). However, this
problem is infeasible because of the term p(z, g, p, H, Q jA,
X), which is exactly the challenge we tried to circumvent
before. Therefore, we turn to the equivalent problem of
maximizing an objective function ~L rather than directly
minimizing the KL divergence. The objective function can
be defined as:

~L qð Þ …

P
z;g
RRR

q z; g; p; H; Qð Þ

�log p A;X;z;g;p;H;Qð Þ
q z;g;p;H;Qð Þ dpdHdQ

( )

(15)

The rationality of this equivalent substitution comes from
the variational inference theory, the objective function and
KL divergence sums up to a constant, which is fixed with
respect to the choice of the q function:

KL qjjpð Þþ ~L qð Þ … log p A; Xð Þ:

In order to find the maximization of the objective func-
tion ~LðqÞ, we seek the partial derivatives of ~LðqÞ with
respect to the variational parameters ~P, ~F, ~�, ~A, ~M, ~N and
make these derivatives equal to zero (based on the First-
Order Condition):

r ~L qð Þ …
@ ~L
@ ~F

;
@ ~L
@~P

;
@ ~L
@~�

;
@ ~L
@~A

;
@ ~L
@ ~M

;
@ ~L
@~N

;
@ ~L
@B

� �
… 0:
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Plugging in the definitions of ~LðqÞ and q(z, g, p, H, Q)
and simplifying the formulas, we yield the expressions of
all the parameters we need to update in our algorithm, as
follows:

~’ir / exp

C ~�r
� �
�C

Pc
r0…1

~�r0
� �� 	

þ
Pm

k…1
Pc

s…1 xik~rik;s C ~arsð Þ �C
Pc

s0…1 ~ars0
� �� 	

þ
Pn

j6…i
Pc

s…1 ~’jsaij C ~mrsð Þ �C ~nrsð Þ‰ 


þ
Pn

j6…i
Pc

s…1 ~’js C ~nrsð Þ �C ~mrs þ ~nrsð Þ‰ 


8
>>>><

>>>>:

9
>>>>=

>>>>;

(16Þ

~rik;s / exp
Xc

r…1
~’ir C ~arsð Þ �C

Xc

s0…1
~ars0

� �h i
þ log bsk

n o

(17Þ

~�r … �r þ
Xn

i…1
~’ir; (18Þ

~ars … ars þ
Xn

i…1

Xm

k…1
xik~’ir~rik;s; (19Þ

~mrr … mrr þ
X

i < j
~’ir~’jraij; (20Þ

~nrr … nrr þ
X

i < j
~’ir~’jr 1� aij

� �
; (21Þ

~mrs … mrs þ
X

i6…j
~’ir~’jsaij; (22Þ

~nrs … nrs þ
X

i6…j
~’ir~’js 1� aij

� �
; (23Þ

bsk /
Xn

i…1
xik~rik;s: (24Þ

C(�) is the Digamma function which can be obtained by
taking the logarithmic derivative of the Gamma function
G(�), which is defined as:

C xð Þ …
dlog G xð Þ

dx
…

G0 xð Þ
G xð Þ

:

4.3 Iterative Optimization Algorithm

Finally, we summarize the entire variational algorithm
and show the procedure of iteratively maximizing ~LðqÞ
in Algorithm 1. The algorithm takes as input the known
adjacency matrix A and the attribute matrix X, a thresh-
old e, and maximum number of iterations nmax. It out-
puts the optimized variational parameters ~P, ~F, ~�, ~A, ~M,
~N, B. The algorithm terminates when the objective func-
tion ~LðqÞ converges to a local maximum, or when the
total number of iterations n reaches the predetermined
maximum nmax. In experiments, we update the parame-
ters until the change in ELBO has fallen below a certain
small threshold e, such as 1e-10. And we set nmax … 1000
for most medium-sized datasets, which is sufficient for
convergence.

Given these approximations of variational parameters,
we can approximate the MAP clustering results of network
communities z	 as follows:

z	 … arg max
z

pðzjA; XÞ

… arg max
z

X
g

ZZZ
pðz; g; p; H; QjA; XÞdpdHdQ

� arg max
z

X
g

ZZZ
qðzÞqðgÞqðpÞqðHÞqðQÞdpdHdQ

… arg max
z

qðzÞ

…
Yn

i…1
arg max

z
qðzij~’iÞ

…
Yn

i…1
arg max

r
~’ir:

(25)

Similarly, the MAP topic assignment g	 is approximated
as:

g	 … arg max
g

pðgjA; XÞ

� arg max
g

qðgÞ

…
Yn

i…1

Ym

k…1
arg max

s
~rik;s:

(26)

In general, at a local optimum of the variational algo-
rithm, we use: 1)~F to detect the community structure of the
network, 2) B to collect semantic information for topical
clusters to help interpret communities, and 3) the correla-
tion matrix ~P to identify the major topics for each
community.

4.4 Complexity Analysis

In the end of this section, we analyze the computational
complexity of the algorithm especially in the case of sparse
networks.

The time to update model parameters in the iterative
loop part (a) via (18) to (24) is O(nmcþc2(eþf)), where e is the
number of edges, m the number of all attributes and f the
number of non-zero contents in the attribute matrix X.
Then, the time to compute the remaining two parameters in
part (b) via (16) and (17) is O(nc2(eþmþf)). Therefore, the
total complexity is O(nc2(eþm)), which is in general efficient
on large sparse networks and can be further speed up by
parallelization or stochastic optimization.

TABLE 2
Statistics of the Real Network Datasets

Datasets n e m c

Texas 187 328 1,703 5
Cornell 195 304 1,703 5
Washington 230 446 1,703 5
Wisconsin 265 530 1,703 5
Twitter 171 796 578 8
Facebook 1,045 26,749 576 10
Citeseer 3,312 4,732 3,703 6
Cora 2,708 5,429 1,433 7
UAI2010 3,363 45,006 4,972 19
Pubmed 19,729 44,338 500 3
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On a PC workstation (Intel(R) Xeon(R) CPU E3-1225 v3
@3.2GHz 3.2GHz processor with 24 Gbytes of main mem-
ory) running Matlab, our method ICMS finishes computa-
tion in 348 seconds on the largest dataset used, i.e., PubMed
with 19,729 nodes and 44,338 edges (see Table 2). It is worth
noting that, SCI [11], which is a very related and state-of-
the-art semantic community detection model (also using
both topology and contents), finishes in 5145 seconds. That
is, ICMS is nearly 15 times faster than SCI.

5 EXPERIMENTS

In the Section 5.1, we first introduce evaluation metrics used
in the experiments. In the Section 5.2, we give parameter
settings and discuss the results on the artificial benchmarks.
In the Section 5.3, we introduce the real network datasets
used in the experiments and evaluate the performance of
ICMS by comparing it with several state-of-the-art methods.
In the Section 5.4, we perform an ablation study on ICMS to
investigate the effectiveness of the network structure part
and the semantic content part. Finally, we conduct a case
study on an online music system in the Section 5.5, to prove
that the model has the ability to obtain multi-semantic inter-
pretations on the community detection results.

5.1 Evaluation Metrics

We exploit different metrics to evaluate the quality of com-
munities detected by ICMS. For disjoint communities, we
use clustering accuracy (AC) [29] and normalized mutual
information (NMI) [30] to compare all the methods against
the ground-truth. NMI can be used to measure the similar-
ity between two clustering results, while AC calculates the
proportion of correct labels. Generally, the larger NMI or
AC, the better the community detection algorithm.

Let C the detected communities and C	 ground-truth
communities with respect to the network, the accuracy of
community detection is defined as:

ACðC; C	Þ …
PN

i…1 dðC	i ; mapðCiÞÞ
n

where map(Ci) is the mapping function that maps each com-
munity Ci to the index of the ith community in community
set C	.

The definition of NMI can be described as:

NMIðC; C	Þ …
MIðC; C	Þ

maxðHðCÞ þHðC	ÞÞ

where MI(C, C	) is the mutual information between C and
C	, and H(C) the entropy of set C.

On the other hand, for overlapping communities, we
adopt two more metrics as quality measures, namely F-score
and Jaccard similarity. We construct the unified evaluation
function as did in [12]:

1
2 C	j j

X
C	i 2C	

max
Cj2C

d C	i ; Cj
� �

þ
1

2 Cj j

X
Cj2C

max
C	i 2C	

d C	i ; Cj
� �

where d(Ci
	, Cj) is a similarity measure (F-score or Jaccard

similarity) between the two sets of communities. Likewise,

larger value of the evaluation metrics means better perfor-
mance of the overlapping community detection.

5.2 Artificial Benchmarks

We use an artificial and computer-generated networks in a
controllable situation to validate the main motivation of this
work.

For the structural information, we adopt the GN (Girvan-
Newman) network [31], which is a classic benchmark
widely used by researchers, to randomly generate the topol-
ogy of networks. GN network is a network composed of 128
nodes, which are evenly divided into 4 communities (that
is, 32 nodes per community). Each node has an average of
zin edges connected to nodes within the same community,
and zout edges connected to nodes outside the community
(which can be seen as the noise of topology), with zin þ zout
… 16. We control the probability pin (…zin/32) > pout (…zout/
96) so that the intracommunity degree of a node is more
likely to be greater than the intercommunity degree, i.e., the
generated network has obvious community structure.

For the content information, we generate a 4h-dimen-
sional binary vector to form 4 topical clusters corresponding
to the 4 communities. To be specific, for each cluster we set
the average number of attributes h to be 50 (hin þ hout … 50),
but among them, only hin attributes relate to the topic,
whereas the remaining hout attributes are irrelevant and can
be seen as the noise of the content cluster. We use a binomial
distribution with mean rin … hin/h to generate a h-dimen-
sional binary vector as its ((s – 1) � h þ 1)th to (s � h)th attrib-
utes, and generate the rest attributes using a binomial
distribution with mean rout … hout/3h. We control the proba-
bility rin > rout so that the node attributes can form obvious
clusters, and set 4h … 200 and the average number of attri-
bute for each node vi to be 16 (i.e., hin þ hout … 16) in our
experiments.

To evaluate the performance of ICMS in the artificial net-
works, we conducted two types of experiments: the case
when the topology and attributes are not well matched, and
the case when the network has poor information of contents
or topology. We adopted two closely related methods, the
degree-corrected stochastic blockmodel (DCSBM, which
uses network topologies alone and can be regarded as a var-
iant of our model) [32] and SCI (which is a nonnegative
matrix factorization (NMF) method, uses both topologies
and contents) [13] as compared methods.

In the first experiment on the artificial benchmark, we
generated random networks with the setting zout … hout … 8.

Fig. 2. The NMI values of 3 methods compared on the artificial bench-
mark as a function of the mismatch degree (pmis). Topo (DCSBM) is a
variant to our method using topologies only. SCI uses topologies and
contents.
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Furthermore, in order to simulate the mismatch between
topology and content, we randomly selected a proportion
(pmis) of nodes and swapped their attribute vectors. We var-
ied pmis from 0 to 1 with an increment of 0.1 in the experi-
ment: the larger pmis is, the more content clusters mismatch
with network communities. As shown in Fig. 2, when pmis is
small, i.e., content clusters match well with communities,
ICMS remarkably outperforms DCSBM and SCI. Even
when pmis is large, ICMS still maintains good performance.
When node contents are not informative of communities
(i.e., pmis… 1), they almost no longer work in the experiment.
At this point, the NMI value of our method is close to that of
DCSBM but still much greater than SCI. This also indicates
that ICMS can make better use of mismatched topology and
contents.

We then consider the case where the network has poor
information of network contents or topology. For simplicity
we fixed pmis … 0 to have the topology match the contents,
although 0 < pmis << 1 will not affect the results much. The
experiment has two parts. In the first part (Fig. 3a), we set
zout fixed to 8, and varied hout from 0 to 12 with an increment
1. The larger hout is, the more irrelevant or noise attributes in
node contents, and the less obvious the clusters of contents.
The results showed that ICMS can well exploit the content
information when hout < 12 to help discover communities,
and as a result outperformed the other two methods. When
hout … 12 (i.e., rin … rout), the contents are completely messy
and can no longer be clustered. In this special case, the NMI
result of ICMS was still not far from that of the baseline
method DCSBM, while SCI had a much worse performance.
On the other hand (Fig. 3b), we set hout … 8 and varied zout
from 0 to 12 with an increment of 1. The greater zout is, the
more noise in the network topology, and the less obvious
the structure. The results show that with the increase of zout,
the NMI value of ICMS gradually decreased but was always
above that of SCI. Even when zout … 12, the network topol-
ogy did not contain any structural information, ICMS was
also able to perform well.

Based on the experimental results above, we can confirm
that our new method can combine the information of net-
work topology and node contents so as to improve the qual-
ity of community detection.

5.3 Real-World Networks

In order to better evaluate the performance of the ICMS algo-
rithm, we use 10 real attributed networks for comparision

[33], [34]. All of these networks furnish the actual community
memberships. Among them, Texas, Cornell, Washington
and Wisconsin are 4 subsets about American universities in
the WebKB dataset. Cora, Citeseer and Pubmed are three
paper-citation networks. Twitter and Facebook are two
social networks including social relationships. UAI2010 is a
Wikipedia article network. Details are listed in Table 2.

In addition, we select three classes of state-of-the-artmeth-
ods for comparison. The first, including DCSBM [33] and
BIGCLAM [35], uses topology information alone. The sec-
ond, including LDA [27], employs node attributes alone. The
third, including Block-LDA [36], PCL-DC [21], CESNA [12],
DCM [25], SCI [13] and RSECD [37], uses information of both
topologies and contents. Note that, DCSBM, Block-LDA,
PCL-DC and CESNA are probability-based methods, where
DCSBM, BLOCK-LDA and CESNA are three generative
models and PCL-DC is a discriminant model. BIGCLAM,
SCI and RSECD are three NMF-based hybrid methods. DCM
is a heuristic algorithm and DGI [38] is a deep learning
model. All these methods used their default parameter set-
tings. Notice that all the tested methods (including ours),
need the number of communities (c) a priori, so it is a fair
comparision. While one can get c via model selection meth-
ods such as cross-validation, modularity maximization and
Bayesian information criterion, as it is not the focus of this
paper, we leavel the discussion to futurework.

We exploit differentmetrics to evaluate the quality of com-
munities detected by ICMS. For disjoint communities, we use
clustering accuracy (AC) and normalized mutual informa-
tion (NMI) to compare all the methods against the ground-
truth, and for overlapping communities, we use F-score and
Jaccard similarity. The results are shown in Tables 3 and 4
respectively, and the best metric values are in bold. In terms
of AC andNMI, as shown in Table 3, ICMS outperformed the
other existing methods on 4 and 5 of the 10 network instan-
ces. In Table 4, whenmeasuredwith F-score and Jaccardmet-
rics, ICMS performed the best on all networks. Moreover, on
those datasets where ICMS do not get the best score, it is still
among the top three. In general, ICMS outperforms almost
all of themethods compared in terms of the four performance
metrics. This certainly is because contents in the network
have latent semantic information, which are combined with
topological information in the model. ICMS can still utilize
the semantic information as much as possible to improve the
community detection results, making it more robust.

The above analysis shows that in majority cases, ICMS
has a better performance than other comparative methods
(Figs. 2 and 3, Tables 3 and 4). The results and rationales
can be summarized as follows:

1. Especially, ICMS performs better than DCSBM, even
though we use similar techniques to deal with net-
work topology. This reveals that making use of con-
tent information in an appropriate way can indeed
improve the quality of detected communities.

2. Compared to algorithms Block-LDA, PCL-DC,
CESNA, DCM and SCI, which use information of
both network topology and node contents, ICMS has
an obvious advantage. Moreover, DGI is a very popu-
lar and highly efficient unsupervised deep learning
methods, but on the 10 dataset, half of the results of

Fig. 3. The NMI values of 3 methods compared on the artificial bench-
mark as a function of (a) the number of irrelevant attributes (hout) and (b)
the average outside-community degree of nodes (zout). Method Cont is
our method using content information only.
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our model are still better than it. This is mainly due to
four properties of the newmethod. a) Even if the node
content mismatches the topology structure, it can still
utilize as much content information as possible to
improve the quality of community detection. b)When
either the topology or content has a structure, it can
continue to make full use of any available informa-
tion. c) When training the model, we do not need the
additional step to balance the impact of network
topology and node contents in the united model. d) It

can better relieve overfitting based on the Bayesian
treatment of themodel’s generative process.

5.4 Deep Analysis of ICMS

Similar to many existing probabilistic graphical models,
ICMS also contains some components that many have a sig-
nificant impact on the performance. Therefore, in order to
test the effectiveness of the various components of ICMS,
we conduct two comparative experiments on ICMS

TABLE 4
Performance Comparison on Overlapping Communities

Metrics (%) Datasets Methods

BIGCLAM CESNA DCM ICMS

F-score Texas 20.64 23.54 11.15 72.03
Cornell 13.23 23.48 14.38 61.35
Washington 13.35 21.91 12.45 82.60
Wisconsin 12.84 23.17 10.45 60.03
Twitter 39.79 43.72 10.57 51.91
Facebook 40.06 49.05 39.21 51.49
Citeseer 9.30 3.38 2.50 45.11
Cora 18.89 31.05 3.43 43.83
UAI2010 16.99 32.32 9.65 35.70
Pubmed 7.72 27.97 0.38 55.21

Jaccard Texas 12.18 13.57 6.03 28.98
Cornell 7.18 13.47 7.95 24.41
Washington 7.25 12.40 6.72 45.97
Wisconsin 7.01 13.14 5.54 25.66
Twitter 26.13 29.63 5.75 33.99
Facebook 28.94 38.18 28.46 41.92
Citeseer 5.01 1.73 1.27 16.90
Cora 10.89 19.10 1.76 19.94
UAI2010 9.87 21.26 5.77 23.97
Pubmed 4.04 16.26 0.19 25.42

TABLE 3
Performance Comparison on Disjoint Communities

Metrics (%) Datasets Methods

DCSBM LDA Block-LDA PCL-DC SCI RSECD DGI ICMS

AC Texas 48.09 56.28 54.10 38.80 62.30 60.43 53.55 65.57
Cornell 37.95 44.62 46.15 30.26 45.64 51.79 38.87 51.79
Washington 31.80 65.90 39.17 29.95 51.15 57.39 48.75 77.41
Wisconsin 32.82 76.72 49.62 30.15 50.38 67.92 44.27 51.91(3)
Twitter 60.49 37.04 35.80 56.79 50.62 53.75 59.84 60.90
Facebook 45.19 31.59 37.66 40.38 51.04 39.12 82.74 48.80(3)
Citeseer 26.57 31.34 24.35 24.85 27.98 48.67 68.76 34.19(3)
Cora 38.48 37.19 25.52 34.08 40.62 36.84 71.93 42.17(2)
UAI2010 2.60 34.07 16.04 28.82 30.94 47.21 33.90 45.52(2)
Pubmed 53.64 46.30 49.01 63.55 N/A 58.45 65.21 64.12(2)

NMI Texas 16.65 31.29 4.21 10.37 17.84 30.34 14.05 36.53
Cornell 9.69 21.09 6.81 7.23 11.44 30.30 13.99 14.01(3)
Washington 9.87 38.48 3.69 5.66 12.37 33.89 13.93 52.94
Wisconsin 3.14 46.56 10.09 5.01 17.03 44.89 13.22 23.17(3)
Twitter 57.48 31.10 0 52.64 43.00 63.26 52.83 67.77
Facebook 43.38 21.53 9.28 38.63 30.01 37.59 5.80 39.12(2)
Citeseer 4.13 9.13 2.42 2.99 4.87 22.30 44.32 10.46(3)
Cora 17.07 14.61 1.41 17.54 19.26 15.40 56.52 30.82(2)
UAI2010 31.21 35.42 5.70 26.92 24.80 45.73 33.58 46.26
Pubmed 12.28 10.55 6.58 26.84 N/A 17.60 25.77 31.03

The Best Results are in bold. The Number After ICMS Indicates Its Rank Among All the Methods When It Is Not the best. N/A Means Out of Memory of Run
Limes > 48 Hours.

TABLE 5
Performance Comparison of Our ICMS with Tow Variants

Metrics (%) Datasets Methods

ICMS-T ICMS-A ICMS

AC Texas 61.20 56.28 65.57
Cornell 34.87 43.08 51.79
Washington 65.90 47.93 77.41
Wisconsin 46.18 45.08 51.91
Twitter 46.21 38.64 60.90
Facebook 33.40 53.24 48.80
Citeseer 30.21 23.02 34.10
Cora 30.58 30.28 42.17
UAI2010 24.03 15.62 45.52
Pubmed 39.15 39.83 64.12

NMI Texas 22.35 3.77 36.53
Cornell 11.42 7.29 14.01
Washington 28.14 5.78 52.94
Wisconsin 10.52 5.24 23.17
Twitter 43.67 8.04 67.77
Facebook 29.72 3.33 39.12
Citeseer 8.25 0.43 10.46
Cora 10.36 0.90 30.08
UAI2010 19.24 2.90 46.26
Pubmed 1.88 0.42 31.03
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