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Abstract—Directed and undirected probabilistic graphical models have been successfully used in community detection in recent years,

but existing graphical model based methods usually only use one type of probabilistic graphical model to discover communities.

However, directed and undirected graphical models have their own advantages for characterizing different network information

(attribute information and network topology). Intuitively, we can make use of the merit of both kinds of models by combining them into a

unified model. However, combining directed and undirected graphical models is difficult, as they have different properties which prevent

parameter sharing and joint training. In this article, we propose a unified model which integrates directed and undirected graphical

models by transforming both them into factor graph. In addition, as network topology and attribute information may contain different

degrees of noises, we add a selective attention layer to learn the reliable weight of each type of information source in node granularity.

For training the model, we derive an iterative belief propagation algorithm to train all the parameters simultaneously. Extensive

experiments on real networks and artificial benchmarks show the superiority of our approach over existing methods.

Index Terms—Social network analysis, community detection, probabilistic graphical model, factor graph, belief propagation

Ç

1 INTRODUCTION

MANY real-world systems can be represented in the
form of complex networks such as social networks,

biological networks and communication networks. Com-
plex networks are generally composed of functional mod-
ules or communities. For example, citation networks consist
of academical communities with similar research interests,
while tissue modules with similar biological functions can
be found in protein networks. Community detection, as a
hot area in network analysis, discovers function modules
and helps gain deeper insights of organizational principle
and predict trend of networks. It also can be used to pro-
mote downstream tasks such as link prediction and recom-
mender system.

Conventional community detection algorithms only uti-
lize network topology for discovering community structure.
The primary task is to find communities in networks, where
connections within a community are dense while those

between communities are sparse [1]. Such methods include
hierarchical clustering [2], [3], modularity-based methods
[4], [5], [6], spectral optimization [7], [8], and dynamic algo-
rithms [9]. However, node semantic attributes may also pro-
vide useful information on network communities. Semantic
attributes describe detailed node information, such as per-
sonal interests of social network users, which may reflect
tendency of nodes towards a group or community. In recent
years there is a surge of state-of-the-art approaches combin-
ing network topology and semantic attributes for commu-
nity detection. The methods along this line include deep
learning methods [10], [11], heuristic methods [12] and sta-
tistical model based methods [13], [14]. It is believed that
the semantic attributes serve as a complementary and
orthogonal source of information to the network topology
for community detection [15].

In particular, the method based on statistical model has
been widely studied and applied because of its solid theo-
retical foundation and superior performance. We would
like to focus on two primary statistical model-based meth-
ods, one is based on directed graphical model, and the other
is based on undirected graphical model. A series of methods
based on directed graphical model have been proposed,
including topic model-based methods [16], [17], [18], Non-
negative matrix factorization (NMF)[19] based methods
[13], [20], etc. On the other hand, NetMRF [21] recently
extends undirected graphical model Markov Random Fields
(MRF) to community detection field by restraining neigh-
boring nodes to be assigned to the same community.
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In fact, directed and undirected graphical models have
different properties and have their own specialties for proc-
essing different kinds of information. Directed graphical
model defines the generation of a single node’s observed
attributes from its hidden properties, following certain pre-
defined generating mechanism. It describes such causal rela-
tionship as conditional probability, which is represented as
directed edge in graph. For example, topic model-based
models, such as Latent Dirichlet Allocation (LDA) [22],
define the conditional probability for a word generated by
underlying topics. Therefore directed graphical model is
prominent at exploring the semantic information behind the
network attributes. On the other hand, undirected graphical
model focuses on dependency relationship among node
pairs and use energy function to constrain related nodes,
which is represented as undirected edge in graph. For exam-
ple, MRF defines pairwise potentials to cast soft constraints
between linked nodes in the graph. Undirected graphical
model is defined on energy functions among adjacency
nodes, whichmakes it suitable tomodel network topology.

As directed and undirected graphical models have their
own advantages, we want to combine strengths of the two
models by forming a unified framework. In such way,
directed graphical model (which is good at modeling the
semantic attributes) and undirected graphical model (which
is good at describing the network structures) are able to con-
tribute in their areas of expertise and, together, acquire amore
comprehensive community result. However, in order to do so
two key challenges must be addressed. 1) It is difficult for the
two kinds of models to share parameters or be trained
together because of their distinct organizing principals and
learning mechanisms. 2) It is difficult to combine the two
models directly because network topology and attributesmay
not be compatible. We observe that the two aspects of infor-
mation often lead to nonidentical community partition results
in real-world dataset, indicating they are not perfectly consis-
tent [13]. This could be due to the fact that two types of infor-
mation contain different levels of noise. Thus, when the two
aspects of information are not compatible, how to automati-
cally determinewhich is themore trustworthy source of infor-
mation is essential to produce accurate final result.

In order to solve the above-mentioned problems, one
may need a new framework that not only transfers directed
and undirected graphical models into the same organizing
form but also automatically balances the trade-off between
the two parts. Fortunately, factor graph fulfills these
requirements. First, directed and undirected graphical mod-
els can both be converted to a Factor Graph [23]. Specifically
speaking, both the conditional probability in LDA and
energy function in MRF can be converted to the joint proba-
bility form defined in factor graph. Under the same form, it
is possible to integrate LDA and MRF into a joint system.
Second, we can add a selective attention layer to automati-
cally learn the reliability of network topology and attribute
information. The selective attention is posed over every
node to automatically balance its trade-off between topolog-
ical and attribute information.

We summarize our contributions as follows:

1. We integrate the directed graphical model and undi-
rected graphical models into a unified framework (to

combine strengths of two models), then automati-
cally balance the trade-off between the two (to allow
our united model to attain better robustness), both of
which contribute to more accurate community detec-
tion results.

2. We develop an effective inference method based on
Loopy Belief Propagation [24], [25] to iteratively learn
parameters and nodes community assignments.

3. Experimental results on 8 real-world networks and
an artificial benchmark show that the proposed
approach usually compares favorably with the base-
lines. A case study is also presented to show our
model can effectively learn more trustworthy infor-
mation from both topology and attribute.

Previously we have published a conference paper which
presents a preliminary realization of the aforementioned
idea [26]. We make significant extensions in this paper by
designing a new adaptive layer with additional attention,
which not only conjuncts the LDA and MRF layers into an
end-to-end model but also makes an automatic and good
balance between the two parts.

2 RELATED WORK

2.1 Community Detection With Network Topology

Traditional methods have mainly utilized the topological
structure of network to fulfill the community partition task.
These methods can be divided into several categories: spec-
tral clustering [8], [27], [28], hierarchical clustering [2], [29],
[30], modularity optimization [4], [5], [6], [31], dynamic
algorithms [9], [32], heuristic approaches [33], [34], and sta-
tistical inference [35] [36]. While these methods laid solid
foundation in the field of community detection, they all
ignore other dimensions of network, such as network attrib-
utes, which also provide vital information about community
partition.

2.2 Community Detection With Topology and
Attribute

Recently new methods combining network topology and
semantic attributes have gained much interest. Algorithms
along this line can be divided into two main categories:
probabilistic graphical model based methods and deep
learning based methods.

Probabilistic graphical model based methods typically
adopt distinct graphical models to characterize different
properties of complex network, such as generation process
or dependency relationship of the network, and then derive
an optimal community assignment through inferring that
model. Two types of the commonly used graphical models
are directed graphical models and undirected graphical
models. For instance, Block-LDA [16] uses two directed
graphical models, i.e., topic model LDA and mixed mem-
bership stochastic blocks model MMSB [37], to generate
topology and attribute structure and attribute. It then
applies a collapsed Gibbs sampling method to approximate
the optimal community assignment. SCI [20], as a matrix
factorization-based directed model, embeds the generation
probability of topology and attribute into two matrices, and
then learns communities with semantic annotation by
jointly optimizing parameters of the two matrices. He et al.
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[38] extend undirected graphical model MRF to define two
kinds of dependency relationships: unary dependency
between node community and node embedding, pairwise
dependency between communities of adjacency nodes. It
adopts the belief propagation to update node communities.

Deep learning based methods for community detection
problem normally follow the methodology of projecting
nodes onto a low dimensional embedding space where orig-
inal node similarity is preserved at a maximal level, and
then classifying the embeddings into different community
classes [39], [40], [41]. For example, graph convolutional net-
work (GCN)[42] based method MRFasGCN [10] adds MRF
as an additional layer of GCN to form an end-to-end model,
so the learned embeddings contain more information about
node community. Generative adversarial network (GAN)
[43] based method SEAL [44] employs the minimax adver-
sarial mechanism. It trains the discriminator to predict
whether a community is real or not by competing against a
more and more competent community generator. BGCN
[45] designs a new bilinear aggregator based on the bilinear
interaction between neighbors so as to derive a more com-
prehensive representations. H2GCN [46] proposes three key
innovations to tackle the heterophily limitations of tradi-
tional GCN. However, most methods that incorporate topol-
ogy and attribute are based on the consistent assumption. In
other word, they tend to simply assume that the topology
and the attribute share the same information of node com-
munity membership, but such assumption is not sufficient.

2.3 Attention Mechanism

Attention mechanism has been successfully transferred
from machine learning to statistical inference and other
domains [47]. It allows the model to selectively focus on
processing certain parts of the input (e.g., certain words in a
sequence or certain areas in an image) and neglect other
parts which are less relevant to the current task. Bahdanau
et al. [48] first bring up the concept of attention to deal with
long sentence in neural machine translation. They add an
alignment model to a RNN encoder-decoder structure so as
to automatically pay attention to context words (instead of
the whole input word sequence) for more precise transla-
tion of the target word. Besides neural machine translation,
attention mechanism has been applied to a wide range of
problems, such as document classification [49] and image
captioning [50]. Yang et al. [51] introduce attention mecha-
nism into statistical inference domain to solve emotion con-
tagion problem. It gives attention to three factors that
influence a user’s emotion and combines them under a fac-
tor graph framework. Wang et al. [52] extend attention fac-
tor graph to deal with sentiment spreading problem and
introduce further user interest information to refine the
attention.

3 THE UNITED MODEL

We first introduce the notations and the problems we try to
solve in this paper in Section 3.1. Then we present an over-
view of the proposed new model and introduce the detailed
process in Section 3.2. Finally, we define this unified model
in Section 3.3.

3.1 Notations and the Problem

Given an undirected attribute network G with N nodes and
M attributed, we have G … X; A; Wð Þ. In specific,
X … x1; . . . xNf g is the set of nodes. Adjacency matrix
A … aij

� �
N�N is used to represent the network topology

where aij … 1 if there exists an edge between node pair
xi; xj
� �

, and aij … 0 otherwise. The node attribute (content)
is represented by the W … wnm‰ �N�M attribute matrix, where
wnm … 1 if xn has the mth attribute, or wnm … 0 otherwise.
Suppose all nodes are divided into K communities, and
C … c1; . . . cNf g denotes a community partition on network
G with ci being the community label of xi.

Given the network G, our objectives are to 1) convert
MRF and LDA models into a unified model, 2) assign N
nodes to form K communities with MRF and N � M attrib-
utes to K topic clusters with LDA, 3) explore the correlation
between communities and topics when integrating LDA
and MRF, 4) introduce attentions to each node so as to bal-
ance the trade-off between topology structure and semantic
attributes. The key contribution of this paper is that, instead
of only achieving a single objective, which itself is challeng-
ing, our model aims to solve all four of them altogether.

3.2 Overview

In order to achieve the objectives discussed above, we
design a three-layer united model, named Adaptive-MRF
(AdaMRF). The graphic model representation of AdaMRF
is illustrated in Fig. 1, with symbols defined in Table 1. The
idea of AdaMRF is converting LDA and MRF into the same

Fig. 1. The three-layer structure of AdaMRF. The bottom layer is used to
model MRF and describes the structural relationship of the networks,
where ci represents the community assignment of node i. Factor nodes
(blue squares) are used to describe the constraint relationship between
each pair of neighboring nodes. The top layer is used to model LDA,
where Zm;n represents the topic of the mth attribute of nth node. The fac-
tor nodes (red squares) are used to denote the constraint relationship
between different attributes belonging to the same node, while the other
factor nodes (yellow squares) are used to represent constraint relation-
ship between the same attribute belonging to different nodes. Last, the
factor nodes (green squares) in the middle layer are used to represent
the constraint relationship between semantic attributes and community
assignment of the same node.
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working mechanism so as to combine the two into a truly
end-to-end model.

First, we cast both topic model LDA and a network-spe-
cific MRF into factor graphs and use them as the LDA layer
(red box in Fig. 1) and the MRF layer (blue box in Fig. 1) of
AdaMRF. Specifically, by converting both the conditional
probability defined in LDA and energy function defined in
MRF to a joint probability form, we unify the likelihoods of
LDA and MRF, making both of them suitable for factor
graph. The upper LDA layer (red box in Fig. 1) models net-
work content. By grouping nodes with similar semantic fea-
tures, the model semantically annotates the communities.
The bottom MRF layer (blue box in Fig. 1), on the other
hand, uses the topology information to find communities by
considering node interactions in local areas.

Second, to form a unified model, the middle adaptive
layer (green box in Fig. 1) is designed as a connector of
MRF and LDA layers. It is to combine topic clusters and
communities based on their correlation, and balance the
trade-off between LDA and MRF layers. To this end, we
add adaptive-layer factors and attention parameter p. The
adaptive-layer factors are used to link LDA and MRF
layers, a similarity function of topic clusters and commu-
nities is computed in these factors. We then add attention
p to learn which is more reliable between the LDA and
MRF layers, and accordingly control their contributions to
the final results.

Last, we combine three layers of factors into a new likeli-
hood function and formulize them into a unified factor
graph framework using the new likelihoods.

3.2.1 Markov Random Field Layer
In MRF layer, we convert MRF model to a new factor form
(blue box in Fig. 1) in preparation for the integration with the
other two layers. Here network topology is considered as the
sole source of information. We follow the idea of NetMRF
[21], where a complete graph is adopted tomodel the interac-
tions between nodes. That is, MRF in AdaMRF is defined on
a fully connected graphical representation, and the pairwise
potentials are defined on every node pair in the network, not
just on node pair that is connected by an edge. The pairwise
potential between node xn and xj is defined as,

unjðcn; cj; anjÞ … �ð�1Þdðcn;cjÞ dndj

2e
� anj

� �
: (1)

Here dn is the degree of node xn in network G. dðcn; cjÞ is the
indicator function, dðcn; cjÞ is 1 if cn… cj, meaning node xn
and xj belong to the same community, and 0 otherwise.
dndj
2e refers to the expectation that node xn and xj are con-
nected by an edge. As stated in this equation, when the
expectation of two nodes having a link is smaller than the
real density in the adjacency matrix, the two nodes tend to
be assigned to different communities, whereas when the
expectation is larger than the real value, the two nodes tend
to belong to the same community. According to Gibbs dis-
tribution [25], we convert the pairwise potential constrains
between nodes into a factor function form, illustrated as the
blue square factors fgnj in Fig. 1,

fgnj… exp ð�1Þdðcn;cjÞ dndj

2e
� anj

� �� 	
: (2)

Since the MRF in AdaMRF only considers pairwise rela-
tionship, the global factor function of the MRF layer is thus
the product of all factor functions in a probability form,

P ðCjAÞ …
Y

n 6…j
fgnj…

Y

n 6…j
exp ð�1Þdðcn;cjÞ dndj

2e
� anj

� �� 	
:

(3)

Each factor casts constraint on node pair in the network
to encourage connected nodes to be assigned to the same
community and disconnected ones to be separated to dis-
tinct communities. In the global factor function, all the fac-
tors are taken into an overall consideration to derive a
coherent community partition that produces the largest
probability of P ðCjAÞ, which corresponds to optimal com-
munity partition.

3.2.2 Latent Dirichlet Allocation Layer
In LDA layer, for the purpose of building a united model,
we convert the conditional probabilities defined in LDA
into the form of joint probabilities, which is the basic com-
posing unit in factor graph, so we can further convert LDA
model to a new factor form (red box in Fig. 1). Based on the
work of [53], the joint probability of traditional LDA model
can be projected onto a collapsed space by integrating out
the multinomial parameters � and h. Consequently, the joint
probability of collapsed LDA is,

P ðW; Zja; bÞ /
QN

n…1
QK

k…1
Gð
PM

m…1 wn;mzk
n;mþaÞ

G
PK

k…1 ð
PM

m…1 wn;mzk
n;mþaÞ

� �

�
QM

m…1
QK

k…1
Gð
PN

n…1 wn;mzk
n;mþbÞ

G
PM

m…1 ð
PN

n…1 wn;mzk
n;mþbÞ

� �;

(4)

where wn;m is the mth attribute of node n, and zk
n;m says

attribute mth of node n (i.e., wn;m) is in topic k. Gð�Þ is the
gamma function. After integrating out � and h, the original
equation of LDA is divided into a series of substructures
concerning each node and each attribute, that is, the

TABLE 1
The Notations Used in This Paper
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variable z becomes locally dependent. From the node stand-
point, topic variable zn;m for mth attribute of node n is only
concerned with the rest topic variables zn;�m of node n.
From the attribute standpoint, on the other hand, topic vari-
able zn;m is only concerned with the rest topic variables
z�n;m of attribute m. Here we have zn;�… zn;�m; zn;m


 �
and

z�;m… z�n;m; zn;m

 �

. Such locally dependent relationship of
topic variables in a substructure can be represented by the
factor function as,

P ðW; Zja; bÞ /
YN

n…1
f�n

YM

m…1
fhm where

f�n …
YK

k…1

Gð
PM

m…1 wn;mzk
n;m þ aÞ

G
PK

k…1 ð
PM

m…1 wn;mzk
n;m þ aÞ

h i and

fhm …
YK

k…1

Gð
PN

n…1 wn;mzk
n;m þ bÞ

G
PM

m…1 ð
PN

n…1 wn;mzk
n;m þ bÞ

h i:

(5)

The collapsed LDA transforms the original directed
graph model to a factor graph with factors f�n and fhm .
Here f�n is represented as the red square factors in Fig. 1,
linking all topic variable zn;�… zn;m; zn;�m


 �
of the same node

n, whereas fhm is represented as the yellow square factors in
Fig. 1, linking all topic variables z�;m… zn;m; z�n;m


 �
over the

same attribute m. Based on the Bayes Theorem we have,

P ðZjW; a; bÞ /
YN

n…1
f�n

YM

m…1
fhm: (6)

In this part, we manage to break down the conditional
dependency in the original LDA into specific constrains
between local topic variables and represent it with factors.
Thus, we transform the directed graphical model into a fac-
tor graph (red box in Fig. 1), where all factors take effect to
derive optimal topic clusters that maximize the probability
in Eq. (6).

3.2.3 The Adaptive Layer
In the previous sections, given network G, we have derived
the topic clusters Z within which the nodes share semantic
similarity, and we are also able to get node community
assignments C by adjacency relationships in the network
topology. According to our earlier discussion, the topic clus-
ter assignments Z … z�;1; . . . ; z�;N


 �
derived from semantic

attributes serve as a mutual complementary information
with community assignments C… c1; . . . cNf g learned from
the network topology, yet topology and attributes may con-
tain different levels of noises. Therefore, to effectively and
robustly unite LDA and MRF layers, the adaptive layer
must 1) exploit the association between the topic cluster
assignments Z and the community assignments C to inte-
grate two parts, and 2) learn the trade-off between the two
based on their reliabilities.

In the light of the above ideas, we develope a new factor
f"n for every node xn with an additional attention pn in the
adaptive layer. As the discussion above, node xn’s topic
cluster label zn … z1;n; . . . ; zm;n


 �
and community identity cn

serve as complementary influence to each other. Besides, an
additional attention pn is added to control the influence
strength. Then we define the factor f"n , which is represented
as the green square factor in Fig. 1,

f"n … exp pn
XM

m…1
Iðcn; zm;nÞ

( )

; (7)

where pn is a real value parameter, larger pn indicates stron-
ger influence effect between zn and cn, hence greater contri-
bution from the attribute part zn of LDA layer. Ið�Þ is
defined as an indicator function representing the similarity
between community assignments cn and topic clusters zn,
Iðcn; zm;nÞ equals 1 if cn … zm;n, and 0 otherwise.

The joint probability of adaptive layer is thus the product
of all nodes’ factor functions [25]:

YN

n…1
f"n …

YN

n…1
exp pn

XM

m…1
Iðcn; zm;nÞ

( )

: (8)

3.3 The Unified Model Definition

Earlier we use three factor functions to describe the intra
and inter constrains over three layers. In order to unify three
layers into a wholistic model, we then give the global factor
function of the unified model written as the product of fac-
tor functions of three layers,

log P ðZ; CjA; W; a; b; pÞ … log
1
Z
Q

n 6…j fgnj

QN
n…1 f�nQM

m…1 fhm

QN
n…1 f"n

" #

:

(9)

Here Z is the normalizing term so that the probabilities sum
to 1. Eq. (9) is the objective function of our united model
AdaMRF, and can be illustrated as the factor graph in Fig. 1.

4 THE MODEL INFERENCE

We developed an iterative belief propagation learning algo-
rithm to estimate the model. We first introduce the parame-
ter optimization process in Section 4.1, and then show the
details of belief propagation learning algorithm in Section 4.2.
Last we give an overall learning procedure of this algorithm.

4.1 Optimizing Parameters

With the objective function defined in Eq. (9), the problem
turns into inferring the parameter p on N nodes that maxi-
mizes the log-likelihood. For that purpose, we rewrite the
joint probability as,

log P ðZ; CjA; W; a; b; pÞ

… log
1
Z

Y

n 6…j
fgnj

YN

n…1
f�n

YM

m…1
fhm

YN

n…1
f"n

… log
1
Z
Q

n6…j fgnj

QN
n…1 f�n

QM
m…1 fhm

�exp
PN

n…1 pn
PM

m…1 Iðcn; zm;nÞ
n o

2

4

3

5

… log
1
Z

Y

n6…j
fgnj

YN

n…1
f�n

YM

m…1
fhm � exp pT � S


 �
;

(10)
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where p … p1; . . . ; pNð Þ is the vector aggregating all pn, and
S … ð

PM
m…1 Iðc1; z1;mÞ; . . . ;

PM
m…1 IðcN; zN;mÞÞ is the vector

aggregating indicator functions of all nodes.
For learning and inference, we introduce a part of com-

munity labels, denoted as CL, and the community assign-
ment of the rest unlabeled nodes is denoted as CU . Here we
first rewrite the log-likelihood function as,

OðpÞ … log P ðCLjA; W; a; b; pÞ

… log
X

Z

X

CU

P ðZ; CjA; W; a; b; pÞ

… log
X

Z

X

CU

Y

n 6…j
fgnj

YN

n…1
f�n

YM

m…1
fhm � exp pT � S


 �
 !

� log Z

… log
X

Z

X

CU

Y

n 6…j
fgnj

YN

n…1
f�n

YM

m…1
fhm � exp pT � S


 �
 !

� log
X

Z

X

C

Y

n6…j
fgnj

YN

n…1
f�n

YM

m…1
fhm � exp pT � S


 �
 !

:

(11)

Then we calculate the gradient with respect to parameter p:

@OðpÞ
@p

…

@ log
P

Z

P
CU

Q
n 6…j fgnj

QN
n…1 f�n

QM
m…1 fhm �exp pT �Sf g

� � 

@p

�
@ log

P
Z

P
C

Q
n 6…j fgnj

QN
n…1 f�n

QM
m…1 fhm �exp pT �Sf g

� � 

@p

2

6664

3

7775

…
P

Z
P

CU exp pT � S

 �

� S
P

Z
P

CU exp pT � Sf g
�
P

Z
P

C exp pT � S

 �

� S
P

Z
P

C exp pT � Sf g
… EP ðCU jA;W;a;b;pÞS � EP ðCjA;W;a;b;pÞS:

(12)

The gradient above is the difference between two expect-
ations on node community assignment. Our object now
turns into finding the community partitions with the fixed
parameter p. A challenge is that our graph model, as illus-
trated in Fig. 1, contains circles, and it won’t be feasible to
directly calculate P ðCjA; W; a; b; pÞ. As Loopy Belief Propa-
gation (LBP) [54] estimates a configuration that contributes
to the largest joint probability from factor graph containing
cycles, we apply the LBP approximate algorithm to estimate
community configuration and design a set of message pass-
ing rules for our joint model, which will be described in
detail in the next section.

We then update p with gradient (so as to maximize the
objective function OðpÞ),

pnew … pold þ � �
@OðpÞ

@p
; (13)

where � is the learning rate.

4.2 Loopy Belief Propagation

We introduce the Loopy Belief Propagation (LBP) before
digging into detailed message definition. The key of Loopy

Belief Propagation is to define the ’message’, which can be
seen as the estimate of marginal probability distribution.
The reason why LBP works is that it allows messages to
spread across the graph model. There are two types of mes-
sages, i.e., the messages from a variable node to a neighbor-
ing factor node and the messages from a factor node to
neighboring variable nodes (for simplicity, in the rest of this
section we use VNs to denote variable nodes and FNs to
represent factor nodes). For instance,

1) messages from VN cn to FN fn:

mcn!fnðcnÞ …
Y

fj2neðcnÞnfn

mfj!xnðcnÞ: (14)

We calculate the message mcn!fnðcnÞ as the product of all
coming messages from neighboring factors fj 2 neðcnÞ
(except for fn). Thus, the message encodes neighbors opin-
ions on cn’s label based on the interactions between cn and
its neighbors. Each VN sends the message to a FN after hav-
ing received all messages from other neighboring FNs.

2) messages from FN fj to VN cn:

mfj!cnðcnÞ …
X

cj

fj
Y

cj2neðfjÞncn

mcj!fjðcjÞ: (15)

We calculate the message mfj!cnðcnÞ as the integral of the
product of fj and the product of the messages from neigh-
boring VNs of fj (except for cn). Factor fj collects messages
of its adjacency VNs (except for cn) and translates them into
the opinions on node cn’s label i.e., message mfj!cnðcnÞ.
Each FN sends the message to a VN after having collected
all messages from neighboring VNs.

Themessages will keep spreading across the graphmodel
recursively until reaching a coherent community partition.

For LBP algorithm in AdaMRF, there are three main
steps.

1. Initialization. We initialize each VN with the uniform
distribution, which can be seen as the probabilities of the
nodes belonging to the communities. The initial probability
is then used as the message from VNs to FNs. Concretely, if
a node cn has a probability P ðcnÞ, the message it sends to
FNs is mcn!fnðcnÞ … P ðcnÞ. Since we can derive the initial
community labels of all nodes, we can calculate the factor
functions in MRF layer as,

fgnj … exp ð�1Þdðcn;cjÞb1
dndj

2e
� anj

� �� �
(16)

Here b1 is a temperature coefficient. Note that the pairwise
potential is the same as the factor function of the FNs in
MRF layer.

Factor functions in LDA layer can be calculated as,

f�n …
1

P
k mn;�mðkÞ þ a
� � (17)

fhm …
1

P
m m�n;mðkÞ þ b
� � ; (18)

where f�n is the incoming messages normalized by the total
number of messages for all topics associated with node xn
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(to make the outgoing messages comparable across nodes),
and fhm is the incoming messages normalized by the total
number of messages for all attributes (to make the outgoing
messages comparable across attributes).

Defined in Eq. (19), factor functions in adaptive layer can
be calculated as,

f"n … exp pn
XM

m…1
Iðcn; zm;nÞ

( )

: (19)

2. Update messages from FNs to VNs. As all the initial
probabilities are treated as the messages from VNs to FNs,
we are able to update messages from FNs to VNs according
to Eq. (15).

First, in the LDA layer, there are two types of FNs: f�n
and fhm , and message updating rules are defined as,

m�n!zn;mðkÞ …
mn;�mðkÞ þ a

P
k mn;�mðkÞ þ a
� �

;
(20)

where f�n is the sum of all messages coming from VNs con-
nected to f�n (except for zn;m). Here we approximate the
original LBP (Loopy Belief Propagation) message passing
rules with two strategies. First, we approximate product
operation in Eq. (17) by summing all the coming messages
from neighboring VNs in order to avoid arithmetic under-
flow. This is necessary as the product of multiple incoming
probabilities often leads to a result close to zero [53]. Sec-
ond, based on the smooth prior, we focus on only K smooth
topic configurations for the attributes associated with the
same node instead of considering all other possible configu-
rations. That is, we require all attributes associated with the
same node to be assigned to the same topic label, so we
leave out the integral operation in Eq. (20).

Following a similar designing principle as Eq. (20), we
can get,

mhm!zn;mðkÞ …
m�n;mðkÞ þ b

P
m m�n;mðkÞ þ b
� �

;
(21)

where m�n;mðkÞ is the sum of all messages coming from VNs
connected to fhm (except for zn;m).

Next, in the MRF layer, message updating rule of FN fgnj
is,

mgnj!cn…
X

cj

exp ð�1Þdðcn;cjÞ dndj
2e � anj

� n o

�mcj!gnjðcjÞ

" #

: (22)

Last, in the adaptive layer, messages of FN f"n are
updated as,

m"n!cn…
X

zn;�…k

exp pn
PM

m…1 Iðcn; zm;nÞ
n o

�
P

zn;m2Nð"nÞncn
mzn;m!"nðkÞ

" #

(23)

m"n!zn;m…
X

cn

exp pn
PM

m…1 Iðcn; zm;nÞ
n o

�ðm�n;mðkÞ þ mcn!"nðcnÞÞ

" #

: (24)

We also consider the smooth prior here, and approximate
product operation of all the coming messages from neigh-
boring VNs by the sum operation discussed earlier.

3. Update messages from VNs to FNs. All the messages
from FNs to VNs have been updated in the previous section,
then the message from VN cn to FNs fgnj and f"n in MRF
layer can be updated again as,

mcn!gnj … m"n!cnþ
X

gni2NðcnÞngnj

mgni!cn (25)

mcn!"n …
X

gni2NðcnÞn"n

mgni!cn : (26)

Here we also approximate product operation in Eq. (13)
by the sum operation to prevent arithmetic underflow.

Topic label VN zn;m in LDA layer connects to three types
of FNs f�n , fhm and f�n . Following the idea in [53], message
from zn;m to all VNs can be updated as,

mn;mðkÞ … m�n!zn;mðkÞ � mhm!zn;mðkÞ � m"n!zn;m : (27)

Following the above three steps, the LBP algorithm
passes messages in the united graph model to estimate
VNs’ community labels.

4.3 Iterative Algorithm Procedure

With all messages in LBP and gradient with respect to
parameter p defined in the previous section, we can give an
overall procedure of our inference algorithm, shown in
Algorithm 1. It is worth noticing that our inference proce-
dure process has two nested iterations. In the outer itera-
tion, we update the parameter p, and within each outer
iteration, we perform two separate inner LBP iterations, one
for estimating P ðCU jA; W; a; b; pÞ, the other for
P ðCjA; W; a; b; pÞ. When the algorithm converges, we can
predict the community labels with the optimal parameter p̂,

mnðcnÞ …
X

gni2NðcnÞ

mgni!cnðcnÞ � m"n!cnðcnÞ: (28)

5 EXPERIMENTS

We specify the experiment setup from three aspects: data-
sets, performance metrics and rival methods. We then com-
pare our model against 9 state-of-the-art community
detection methods on 8 real-world networks. Furthermore,
we validate the motivation of this algorithm on an artificial
dataset. In the last, we conduct convergence analysis using
four real-world datasets.

5.1 Experimental Setup

Real-World Datasets. We first use 8 real-world attributed net-
work datasets in our experiment, all of which are with node
community labels. The networks are shown in Table 2. Cor-
nell, Texas, Washington and Wisconsin are from WebKB
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dataset and the UAI2010 are from Wikipedia [55]. Cora,
Citeseer and Pubmed are from [42].

Algorithm 1. Iterative Learning Procedure of AdaMRF

Input: network topology information G … X; A; Wð Þ, partial
node label CL, learning rate �, community (topic) number K,
hyperparameters a, b, b1, maximum number of outer iteration
Tout, maximum number of inner iteration Tin, convergence
threshold k;
Output: Attention parameter p̂, community assignment Ĉ

U
;

1: Initialize the messages from VNs to FNs and p;
2: tout … tsemi … tun … 0
3: Repeat:
4: Repeat:
5: Update messages from FNs to VNs according to

Eqs. (20), (21), (22), (23), and (24);
6: Update messages from FNs to VNs according to

Eqs. (25), (26), and (27);
7: tun … tun þ 1
8: Until mnew � moldj j < k or tun > Tin
9: Repeat:
10: Update messages m from FN to VNs according to

Eqs. (20), (21), (22), (23), and (24) with CL;
11: Update messages m from VN to FNs according to

Eqs. (25), (26), and (27) with CL;
12: tsemi … tsemi þ 1
13: Until mnew � moldj j < k or tsemi > Tin
14: Calculate the gradient of p according to Eq. (12);
15: Update p according to Eq. (13);
16: Until mnew � moldj j < k or tout > Tout
17: Calculate ĈU , p̂ according to Eq. (28);

Artificial Benchmark. We also use a classic artificial bench-
mark, GN random network, from the Newman’s model [2]
to validate the motivation of our method. The GN network
is constructed with 128 nodes divided into 4 equal-sized
communities. Each edge is independently generated with
two parameters, zin for the average edge number between
communities and zout for the average edge number within
communities. The average degree on nodes, ztotal (where
ztotal … zoutþzin) is 16. The network structure depends on
parameter zout: as zout grows, more noise will be introduced
between communities, which will lead to a more challeng-
ing network structure. We generate a 4h-dimension binary
attribute vector for every node to form 4 semantic clusters.
For nodes belonging to the sth community, we follow the
binomial distribution with mean rin … hin=h to generate the
ððs � 1Þ � h þ 1Þth to ðs � hÞth attributes, while the rest of
the vector is generated with a binomial distribution with
mean rout … hout=3h. Note that we have hin þ hout … 16. Orig-
inally, the generated attributes and topologies have the
same community identities. We use a parameter pmis to

control the level of noise added to attributes. pmis represents
the portion of nodes randomly chosen from the network
whose attributes are exchanged with each other. Therefore,
greater pmis corresponds to more attributes shifted from
original place, which leads to a more challenging cluster
structure.
Performance Metrics. To evaluate the algorithm performance,
we adopt the metrics of normalized mutual information
(NMI) [56] and accuracy (AC) [57] on algorithm output and
the corresponding ground truth. Specifically, the accuracy
(AC) is defined as:

ACðĈ; CÞ …
1
N

XN

n…1
dðmapðĈnÞ; CnÞ; (29)

where Ĉ is the detected community and C is the ground
truth, and mapðĈnÞ is the mapping function using Kuhn-
Munkres algorithm to map Cn and Ĉn in a comparable form.
Normalized mutual information NMI measures the similar-
ity of clustering results Cn and Ĉn, which is defined as:

NMIðĈ; CÞ …
MUðĈ; CÞ

maxðHðĈÞ; HðCÞÞ
: (30)

Here HðCÞ …
PN

n…1 P ðCnÞlog ðP ðCnÞÞ is the entropy of com-
munity partition C, and MUð�Þ stands for mutual informa-
tion between Ĉ and C, which is defined as:

MUðĈ; CÞ …
X

Ĉj;Cn
P ðĈj; CnÞlog

P ðĈj; CnÞ
P ðĈjÞP ðCnÞ

; (31)

where the marginal probability and joint probability of com-
munity assignment are :

P ðCnÞ … Cnj j= Cj j

P ðĈj; CnÞ … Ĉj\Cnj j
Cj j ;

(32)

Rival methods. We use three types of baseline methods for
comparison. The first type of methods use network topol-
ogy alone for community detection, including DCSBM [35]
and NetMRF [21]. The second combine network topology
and node attribute, including SCI [20], attrMRF [21] and a
two-stage algorithm, which first derives the LDA output
and then passes it directly to MRF. Here attrMRF model
also integrates LDA and MRF but neglects the inconsistency
between network topology and attribute information. The
third are semi-supervised methods on attribute networks
which include two state-of-the-art machine learning algo-
rithms: GCN [42], BGCN [45], H2GCN [46] and MRFasGCN
[10], which derive the embedding from the training process,
and then use it as the input of K-means clustering algorithm
to acquire resulting communities.

Our method AdaMRF falls into the category of semi-
supervised community detection methods with partially
labeled nodes to learn the attention parameter, so some
semi-supervised benchmarks are introduced to make a fair
comparison. It is also worth noting that attrMRF, NetMRF
and the two-stage algorithm were originally designed as
unsupervised methods, but we apply the same semi-super-
vised learning strategy as AdaMRF to make a fair compari-
son. Here we adopt the same training set CL for all

TABLE 2
Real-World Datasets Information
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methods. We adopt the proportion of the semi-supervised
information according to [55] by using 20% random nodes
as the training set for all methods.

The code of each method compared is obtained from
their authors, and the parameters used are the default ones
from the original papers. All baselines require a predefined
number of communities as an input parameter, which is set
to the same number of ground truth.

5.2 Evaluation of Community Detection

We evaluate our method for detecting communities with 8
real-world networks. The results of all methods compared
are presented in Table 3. As shown, our algorithm AdaMRF
outperforms 7 out of 8 networks in terms of AC and NMI.
For the rest of datasets, though AdaMRF may not perform
the best, in most cases it still gains comparable results with
the best baselines. The results can be summarized as
follows,

1) Our algorithm outperforms the topology based
methods. In particular, our algorithm gains better
result than NetMRF, which is similar to the MRF
layer of our method. Such result proves that making
appropriate use of content information indeed
improves the community discovery.

2) Compared to the algorithms that use both network
topology and contents, our algorithm AdaMRF still
has advantages. For example, SCI is based on NMF
and does not consider the different natures of net-
work topology and attribute information, while our
AdaMRF fully exerts the strengths of both directed
and undirected models for fitting distinct informa-
tion. The attrMRF and two-stage algorithms are com-
posed of the same component units as AdaMRF, but
with different combining strategies. They neglect the
inconsistency between topology and attribute and
integrate both parts directly. We observe that these

two methods fail to outperform AdaMRF, which fur-
ther indicates that combing topology and attribute
directly could introduce noise and, in turn, lead to
compromised results. While methods based on neu-
ral network, i.e., GCN, BGCN MRFasGCN and
H2GCN, are considered to have excellent learning
ability, our method AdaMRF, which is under a dif-
ferent mechanism, outperforms GCN-based meth-
ods in most datasets and acquires comparable
results in the other datasets. To sum up, we innovate
a favorable way of combining directed and undi-
rected graphical models, which integrates their
advantages for discovering communities. By making
use of each model’s merit and having the models
work as one unit, we improve the quality of detected
communities. In addition, our method deals with the
inconsistency problem between topology and attri-
bute information which, although ubiquitous in real
networks, has been largely neglected.

5.3 Motivation Analysis

We carry out studies on the GN artificial network intro-
duced in Section 5.1 to further validate the motivation of
our method in automatically balancing the trade-off
between network topology and semantic attributes. We use
the LDA, NetMRF and attrMRF as the baselines. Note that,
both attrMRF and AdaMRF use NetMRF and LDA as com-
posing units, where NetMRF and LDA can be seen as two
variants to our method using either topologies or attributes.

As previously mentioned, AdaMRF can infer two varia-
bles, i.e., topic cluster Z and community partition C, and
automatically balance the contribution of network topology
and semantic attributes to the final community assignment.
Our experiments on simulated data are designed to validate
the balancing capability of AdaMRF under two extreme cir-
cumstances. We set the number of communities and topics

TABLE 3
Comparison on Community Detection in Terms of AC and NMI

Metrics (%) Methods Cornell Texas Washington Wisconsin Uai2010 Cora Citeseer Pubmed

AC DCSBM 37.9 48.1 31.8 32.8 2.6 26.6 38.5 53.6
SCI 36.9 49.7 46.1 46.4 29.5 34.4 41.7 -
NetMRF 31.8 30.6 35.0 28.6 31.1 22.2 58.1 55.5
two-stage 41.0 42.7 46.5 31.0 36.8 50.2 51.0 50.7
attMRF 47.7 50.8 66.4 32.1 37.2 52.7 52.7 55.5
GCN 39.0 42.1 47.1 31.6 18.1 56.7 63.1 73.3
MRFasGCN 35.4 44.7 48.1 30.8 13.9 34.7 43.7 63.2
BGCN 42.7 43.4 34.3 34.2 12.9 68.9 59.6 76.3
H2GCN 59.2 67.1 69.6 51.2 25.1 78.2 66.8 76.6
AdaMRF 67.3 72.1 73.6 79.0 44.0 80.9 59.8 78.4

NMI DCSBM 9.7 16.6 9.9 3.1 31.2 4.1 17.1 12.3
SCI 6.8 12.5 6.8 13.3 23.4 9.2 17.8 28.3
NetMRF 7.3 5.5 5.8 3.2 25.8 1.2 37.2 16.9
two-stage 7.8 8.5 9.0 9.31 43.0 27.9 17.8 16.2
attMRF 21.4 12.5 26.1 15.2 38.4 36.1 26.3 16.0
GCN 6.9 14.4 12.4 12.4 13.9 42.1 40.1 37.2
MRFasGCN 12.4 16.4 15.5 9.6 7.6 19.9 22.7 23.6
BGCN 10.1 18.6 18.2 11.0 6.3 49.4 35.8 37.3
H2GCN 30.4 35.5 43.6 36.4 18.4 58.8 43.9 39.4
AdaMRF 31.2 34.7 46.3 56.0 46.6 62.0 45.5 40.3
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to the ground truth and apply h … 50 and hout … 8 for node
attributes. As for the topology parameter zout and attribute
parameter pmis, we perform the following experiments with
different value of the two parameters.

In the first experiment, we test all algorithms on net-
works that have descending quality of content structures.
We set zin … zout … 8 to generate networks that have known
community structure but are also random in some respects.
We vary pmis from 0 to 1 with an increment of 0.1. As pmis
grows, more noises will be added to content information,
consequently the community structure in attribute is
becoming more and more vague. We run our AdaMRF on
20 generated random networks and use the average accu-
racy (AC) and normalized mutual information (NMI) as the
quality metrics for performance assessment. As shown in
Figs. 2a and 2b, both AC and NMI show the same pattern.
When pmis is small, both AdaMRF and attrMRF have signifi-
cantly better results, and perform much better than the
baseline method NetMRF. However, as pmis increases,
attributes information shifts and the incompatible situation
becomes worse, the performance of attrMRF severely deteri-
orates, eventually it falls behind the baselines by a large
margin. It’s worth noting that attrMRF follows the same pat-
tern as LDA, indicating it is not robust against descending
quality of attributes, leading a deteriorated results. On
the contrary, while the performance of AdaMRF descends
as pmis increases, it is still better than the baselines even
when the quality of attributes is very poor (and AdaMRF
will eventually reduce to the topology-based method
NetMRF). It is shown that methods that overlook the incon-
sistency problem between topology and attribute (such as
attrMRF) suffer from the negative influence brought by bad
information source and may perform worse than those
which only depend on a single good source of information.
Our method AdaMRF, on the other hand, automatically
learns to focus more on the good source of information and
less on the bad one.

In the second experiment, we focus on the situation
where networks have poor community structures of topol-
ogy. We fix pmis … 0 and vary zout from 0 to 12 with a step
size of 2. The larger zout is, the less structure information in
network topology. When zout … 12, the topology barely has
any community structure. We test AdaMRF on 20 generated
random networks and compare the average AC and NMI
with other methods. Here we use LDA, NetMRF and
attrMRF as baselines, as LDA and NetMRF are the basic
units of both AdaMRF and attrMRF to fit topology and attri-
bute respectively. It can be seen from Figs. 2c and 2d, as the
topology gets worse, the accuracy of NetMRF undoubtedly
drops sharply due to the fact that it utilizes only the net-
work topology. We also observe that attrMRF, for the lack
of an adaptive layer and balancing mechanism, bears nega-
tive effect brought by NetMRF and consequently has worse
results. However, our method AdaMRF gradually reduces
to the baseline LDA (which only uses attribute information)
and never performs worse than LDA. The observation indi-
cates several points. First, attrMRF shows the same chang-
ing pattern as NetMRF, which means fixing weights to
topology and attribute could indeed lead to deteriorated
performance. Second, when zout is small, AdaMRF follows
the instruction of both NetMRF and LDA, and as zout
increases, AdaMRF approaches LDA and eventually
reduces to LDA. That is, AdaMRF is capable to adapt itself
to the change of information source and focus on the more
trustworthy data source. This is done by learning the
weights of different sources so as to robustly combines
topology and attribute information. The claim above is dem-
onstrated by our empirical results.

5.4 Convergence Analysis

In this section, we give convergence analysis to show that
our iterative belief propagation learning algorithm eventu-
ally converges to an optimal solution of community assign-
ment. The iterative belief propagation inference process is a
two-step method. In the inner iteration, we fix the weight
parameter p to the current value, and update community
identity C and topic cluster Z with the LBP inferring algo-
rithm. In the outer iteration, using the current community C
and topic cluster Z, we update parameter p using gradient
descend. As the proof for convergence of LBP algorithm in
inner iteration is relatively straightforward, here we focus
on the analysis on outer iteration, namely the convergence
of parameter p. We use Cornell, Texas, Washington and
Wisconsin real-world networks and default parameter of
AdaMRF. The average result across 160 repetitions is shown
in Fig. 3. In Figs. 3a, 3b, 3c, and 3d, the x axis represents the
number of outer iterations while the y axis represents the
changes of weight parameter p between each iteration. It is
worth noting that each outer iteration corresponds to 300
times inner iterations of running the LBP algorithm where
the LBP converges. As illustrated, parameter p varies quite
much at the very beginning, but it basically saturates after
120 runs of the algorithm. This means that as the number of
outer iterations increases, the parameter p gradually con-
verges to a satisfactory result. In Figs. 3e, 3f, 3g, and 3h, the
x axis represents the number of outer iterations and the y
axis represents the number of inner iterations needed for

Fig. 2. Results of 4 methods on artificial random networks. (a) NMI as a
function of the number (pmis) of irrelevant or noise attributes and (b)
Accuracy as a function of the number (pmis) of irrelevant or noise attrib-
utes. (c) NMI as a function of the average outside-community degree
(zout) of nodes and (d) Accuracy as a function of the average outside-
community degree (zout) of nodes.
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belief propagation to converge on the basis of current p. It
shows that, as the number of outer iteration increases, the
number of inner iteration drops. This means that the param-
eter p converges to a value that leads to satisfactory commu-
nity assignment.

6 CONCLUSION

In this paper, we propose an end-to-end probabilistic graphi-
cal model for community detection, which takes advantages
of both directed and undirected graphical models so as to bet-
ter explore information in network topology and attributes.
The new joint model integrates LDA and MRF via factor
graph with attention mechanism, which can automatically
select the better information source between topology and
attributes. The method proposed is evaluated on 8 real data-
setswith different scales. Experimental results show the supe-
riority of the newmethod compared to the state-of-the-arts.
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