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Abstract
Due to the lack of high-quality emotional speech synthesis
datasets, the naturalness and expressiveness of synthesized
speech are still lacking in order to achieve human-like commu-
nication. And existing emotional speech synthesis system usu-
ally extracts emotional information only from reference audio
and ignores sentiment information implicit in the text. There-
fore, we propose a novel model to improve emotional speech
synthesis quality by learning explicit and implicit representa-
tions with semi-supervised learning. In addition to explicit
emotional representations from reference audio, we propose
an implicit emotion representations learning method based on
graph neural network, considering dependency relations of a
sentence and text sentiment classification (TSC) task. For the
lack of emotion-annotated datasets, we leverage large amounts
of expressive datasets to reinforce training the proposed model
with semi-supervised learning. Experiments show that the pro-
posed method can improve the naturalness and expressiveness
of synthetic speech and is better than the baseline model.
Index Terms: Emotional speech synthesis, BERT,Graph neural
networks, text sentiment representations

1. Introduction
In the past few years, neural speech synthesis techniques
have experienced significant development. End-to-end text-to-
speech (TTS) systems, such as [1, 2, 3] have achieved remark-
able results in terms of naturalness and intelligibility of general
speech. Benefiting from these techniques, the field of emotional
speech synthesis (ESS) [4, 5] has attracted extensive attention
from researchers because it is closer to practical applications.

Emotional speech synthesis aims to produce natural and ex-
pressive speech using prescribed emotions, usually from one of
several predefined emotional categories (happiness, anger, etc.)
[6, 7]. To achieve emotional speech synthesis, a common solu-
tion is to learn emotion-related latent representations from the
reference audio [8, 9]. The goal is to make the synthesized
speech imitate the emotion of the reference audio, which can be
treated as some kind of style transfer. The methods mentioned
above report some promising results in the aspect of emotion
expressiveness, but these methods rely on an emotion-annotated
dataset that is most likely not available. The lack of emotion-
annotated speech datasets is one of the main obstacles that limit
the research of emotional speech synthesis.

Therefore, some semi-supervised approaches have been
proposed to alleviate the burden of data requirements [10]. Tits
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et al. [11] investigated how to leverage fine-tuning on a pre-
trained Deep Learning-based TTS model to synthesize emo-
tional speech with a small dataset of another speaker. Wu et
al. [12] presented an emotional speech synthesis method us-
ing style tokens and semi-supervised training. Paper [13] pro-
posed to merge an external SER dataset and a labeled subset of
the TTS dataset to train a SER model and label the whole TTS
dataset by the trained SER model. These semi-supervised meth-
ods can greatly reduce the amount of labeled data required for
model training. However, these methods are still not universal
enough because a subset of the emotional dataset is usually not
high-quality synthesis-specific audios and ignores the implicit
sentiment contained in the text.

Speech conveys information not only through audio
prosody, but also through its phonetic content [14]. Both im-
plicit linguistic prosody and explicit affective prosody are man-
ifested over a segment of speech beyond the short-time speech
frame. Some studies have attempted to extract rhythms from
the textual content, Zhou at al.[15] proposed a semantic repre-
sentation learning method based on graph neural network[16],
considering dependency relations of the sentence to enhance ex-
pressiveness. And a character-level graph embedding is con-
structed in [17] to map the input text to graph embedding from
time-domain to space-domain with the semantic information
embedded. However, all of the above use simple structures
designed only from the text and without considering deeper
sentiment-related semantics and rich sentiment-related text.

Combining the aforementioned ideas of using semi-
supervised approaches on a small emotional dataset and learn-
ing from text to enhance expressiveness, we propose a novel
ESS model. This model is trained to learn emotional informa-
tion from both speech and text to generate emotional speech.
The contributions of this paper are as follows. I) We propose
an implicit sentiment representations learning method based on
the graph neural network, considering dependency relations of a
sentence and text sentiment classification (TSC) task. II) For the
lack of emotion-annotated datasets, we leverage large amounts
of expressive datasets to reinforce training the proposed model
with semi-supervised learning. III) To the best of our knowl-
edge, this work is the first attempt to improve emotional speech
quality using text rather than only explicit emotional representa-
tions from reference speech. The objective and subjective eval-
uation results demonstrate that our ESS system exhibits superior
performance compared to the baseline model in terms of speech
naturalness and emotion expressiveness.

The remainder of this paper is structured as follows. In
Section 2, we describe our proposed method. Section 3 presents
the experimental conditions and the results of the subjective and
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Figure 1: An overview of the proposed model architecture. The emotion and sentiment classification network are used to extract the
corresponding emotion and sentiment representations from the speech and text, respectively.

objective experiments. Section 4 concludes the paper with our
findings and our future work.

2. Proposed method
The proposed method, shown on the left side of Figure 1, is
based on the end-to-end TTS architecture Tacotron2 [2]. For the
text encoder input x, we used the character sequence of the nor-
malized text for training. Apart from the text encoder, we use
the emotion encoder and sentiment encoder to extract explicit
emotion representations Ee and implicit sentiment representa-
tions Se from reference Mel spectrum and text respectively. The
learned representations (explicit and implicit) and text features
Te jointly dominate the generation of the final Mel spectrum as
follows:

P (Melout|Ee, Te, Se; θ) (1)

As for representations learning, the proposed model contains
two modules to provide emotional information during speech
generation, which is learned from text inputs and extracted from
reference audios.

2.1. Explicit emotion representations

The explicit emotion representations learning module is shown
on the top right of Figure 1, which is comprised of an emotion
encoder and an emotion classifier. We use this network to con-
struct an emotion embedding space learned from reference au-
dio samples through the speech emotion recognition task. And
we use the explicit emotion representations learned from the
emotion encoder to perform emotion transfer during inference.

The emotion encoder is composed of two 2D convolu-
tion layers and two Bidirectional Long Short-Term Memory
(BLSTM) layers, and the last BLSTM state generates a 100-
dimensional emotion representation. The classifier consists of
a fully connection layer(FC) and a softmax layer. Finally, the
softmax layer outputs the probability of four emotion types, i.e.,
neutral, happy, angry and sad.

2.2. Implicit sentiment representations

The implicit sentiment representation learning module is shown
in the bottom right of Figure 1, which is also divided into two
parts: a sentiment encoder and a classifier. And the sentiment
encoder mainly consists of a graph construction module and a
graph representation module. Like the emotion embedding net-
work, we learn sentiment information from text through the text
sentiment classification task. And we only use the sentiment
encoder to extract implicit representations from the text during
inference.

2.2.1. Graph construction

We use a graph to represent dependency relations of semantic
tokens, defined as G = (V,E). Node V = v1, v2, · · · , vn
represents the words with semantic information in a sen-
tence. We use the bidirectional encoder representations from
the Bidirectional Encoder Representations from Transformers
(BERT) [18] through the text sentiment classification task to
extract word-level semantic information from the words W =
w1, w2, · · · , wn in a sentence. Edge E denotes directed edge
from node vi to node vj with a particular dependency relation.
We extract semantic representations and the structure of the de-
pendency tree from W , which can be expressed as:

[e1, e2, · · · , en] = BERT(w1, w2, · · · , wn)

Edep = Dependency(W )

Vbert = [e1, e2, · · · , en]
(2)

where the ei is the feature of the i-th word from the Bert, Edep

is the edge set of relations from dependency parsing and Vbert

is set of nodes.
And in graph construction, we use the bidirectional depen-

dencies [17]. As shown in Figure 1 of the sentence ”I love my
city”, the node ”city” points to the node ”my” in the original de-
pendency tree. However, we take into account that words have
modifying relations with each other. The semantic information
of the child node will also affect the parent node. Therefore, we
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adopt the directions of two information flows to construct the
dependency graph.

2.2.2. Graph representation learning

To better capture the semantic information of long sentences,
we use the Gated Graph Neural Network(GGNN) [19], which
maps the dependency graph to semantic representations through
information dissemination. The word-level BERT feature ei is
taken as the source state, and the message is passed according
to the adjacency matrix to aggregate the message to the target
node. Then, we obtain the word-level semantic representation
through GGNN.

Sw = GGNN(G) (3)

where the Sw is the word-level embeddings.
Because we want the sentiment representation at the sen-

tence level, we need to conduct a graph pooling for down-
sampling and obtain a 100-dimensional semantic representation
after passing through a fully connection layer(FC). The process
is as follows:

Ssent =Pooling(Sw)

Se =FC(Ssent)
(4)

2.3. Semi-supervised training

The lack of emotion-annotated datasets is one of the main ob-
stacles that limit the research of emotional speech synthesis.
Therefore, we designed a semi-supervised training to leverage
both annotated emotional speech data and other un-annotated
emotional speech or text data. And the various types of data
used in our method are listed as follows, where x means the
text and y means speech:

• DA = {xa, ya} means small annotated emotional speech
data (with text transcript).

• DT = {xt} means annotated sentiment text data (without
audio).

• DS = {ys}means annotated emotional speech data (without
text transcript).

• DG = {xg, yg} means general speech data (without emo-
tional annotates).

• DN = {xn, yn} means expressive speech data (without
emotional annotates).

The general speech data DG is used to learn alignment, and
single modality text data DT and speech data DS are used to
pre-train the sentiment classification and emotion recognition
models for text and speech, respectively. This semi-supervised
training process is shown in Algorithm 1.

Note that we adopt two semi-supervised strategies: S-first
and G-first. S-first means to first train the emotion encoder with
DA data and then train the sentiment encoder with DN data,
while G-first means the reverse training order. The above two
different strategies are mainly used to distinguish the effective-
ness of unlabeled and labeled data in semi-supervised training.

3. Experiments and results
3.1. Experimental Setup

Datasets. We conducted experiments on five different corpora.
We use IEMOCAP [20] as (DS) to pre-train SER model and use
selected GoEmotions as (DT ) to pre-train TSC model. Then,we
train our model with LJSpeech [21] as DG, Blizzard Challenge

Algorithm 1 Semi-training algorithm.

Input: Datasets: DA, DT , DS , DG, DN ,
{SER, TSC} ← initialization with random weights.

Output: The trained proposed ESS model
Pre-training:

1: Pre-train SER model with {DS}
2: Pre-train TSC model with {DT }

Training: Train ESS model
3: {ESS} ← initialization with pre-train sentiment and emo-

tion encoder’s parameters of SER and TSC.
4: Train ESS model with {DG}, while fix the parameters of

sentiment and emotion encoder.
5: if S-first then
6: Train ESS model with {DA}, while only fix the param-

eters of sentiment encoder.
7: Train ESS model with {DN}, while only fix the param-

eters of emotion encoder.
8: else if G-first then
9: Train ESS model with {DN}, while only fix the param-

eters of emotion encoder.
10: Train ESS model with {DA}, while only fix the param-

eters of sentiment encoder.
11: end if

Table 1: Details of the corpus mainly used in our experi-
ments. The emotional categories are respectively are neu-
tral(Ne),sad(Sa),happy(Ha),angry(an) and expressive(Ex).

Dur(h) Sent Emo

LJSpeech 23.4 13100 Ne
BC 16.8 8248 Ex
ESD 8.5 14,000 Ne,Sa,Ha,An
IEMOCAP 12 36600 Ne,Sa,Ha,An
GoEmotions - 5525 Ne,Sa,Ha,An

2013 (BC) [22] as DN , and Emotional Speech Datasets (ESD)
[23] as DA. The details of the corpora are listed in Table 1.

Method. We trained the following three models:

• T-GST: We use GST-Tacotron [8] as the baseline.

• T-SER: Only using the SER model to learn emotion infor-
mation like the SER part of [14]. We also use this model as
another baseline.

• T-G-S: Our proposed model that learns sentiment and emo-
tion information from both text and audio. (G-first)

• T-S-G: Our proposed model that learns emotion and senti-
ment information from both audio and text. (S-first)

Evaluation metrics. In terms of subjective evaluation for
naturalness, the mean opinion score (MOS) was calculated on
a scale from 1 to 5 with 0.5-point increments. To subjectively
evaluate the emotion expressiveness performance of our pro-
posed method, the emotion classification test was conducted,
and the synthetic utterances of all emotions were played in ran-
dom order. Each subject was asked to choose the emotion they
perceived for each utterance.

We also conducted an ABX test. The rating criterion was
determined by answering the question “Which one’s speaking
emotion is closer to the target audio emotion?” with one of
three choices: (1) the first is better, (2) the second is better, and
(3) neutral. In all tests, 10 native listeners were asked to rate
the performance of 40 randomly selected synthesized utterances
from the test set.
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Figure 2: Confusion matrices of synthesized speech from T-GST,T-SER,T-G-S and T-S-G. The X-axis and Y-axis of subfigures represent
predicted and truth emotion label, respectively.

Table 2: MOS results with 95% confidence intervals computed
from the t-distribution.

Emotion T-GST T-SER T-G-S T-S-G

Neutral 3.14±0.32 3.54±0.24 3.55±0.27 3.80±0.23
Sad 3.40±0.27 3.65±0.20 3.70±0.20 3.73±0.18
Happy 3.40±0.32 3.43±0.27 3.48±0.25 3.62±0.25
Angry 2.72±0.25 3.18±0.30 3.65±0.30 3.98±0.20

Neu Hap Sad Ang Neu Hap Sad Ang Neu Hap Sad Ang

T-GST NP T-SER

20%

50%

28%

40%

30%
11%

74%

32%

30%
32% 28%

15%

T-SER NP T-S-G

30%

39%

19%

54%

33%

44%

25%

45%

31%

27%

23%
30%

T-SER NP T-G-S

29% 21%
42%

20%

39%

59%
44% 54%

32%

20%

14%

26%

Figure 3: The preference test results between T-GST vs. T-SER
and T-SER vs. proposed model.

3.2. Result and analysis
Subjective evaluation of speech naturalness. The results of
the MOS test are presented in Table 2. The proposed model
T-S-G and T-G-S demonstrated a significantly better natural-
ness than the baseline models T-SER and T-GST. This result
shows the advantage of learning emotion representations from
both text and audio rather than only audio. Besides, the speech
quality of T-S-G is slightly better than T-G-S. This result mainly
stems from two reasons: on the one hand, the audio quality of
expressive data BC is much better than ESD; on the other hand,
we can learn implicit sentiment from the text of BC, which im-
proves the expressiveness of synthesis speech. In a word, refin-
ing the model with BC instead of ESD at the final step could
avoid the negative effects of the low audio quality and low text
coverage of the small annotated emotional speech data.

Subjective sentiment classification test for emotional ex-
pressiveness. Figure 2 shows the confusion matrices of the sub-
jective emotion prediction results. From Figure 2, we can see
that there were plenty of recognition errors in the baseline mod-
els. Of course, the T-GST baseline gets the worst performance
in this test. This result means that it is difficult for the model to
emotion control and transfer without the constraints of emotion

labels. When learning emotion information from both text and
audio as the proposed model, the confusion matrix appeared in
a clear diagonal form. What’s more, listeners are often confused
between the synthesized speech of happy and neutral. This may
be a problem in the training corpus, and it is difficult to build a
corpus with a high degree of discrimination for each emotion.

Subjective evaluation of ABX test for emotion expres-
siveness. Figure 3 shows the results of the ABX test. A gap
between our proposed model (T-G-S and T-S-G) and the base-
line models (T-GST and T-SER) is visible. This shows that the
proposed model can produce better latent emotion representa-
tions, which results in better emotion expressiveness. The re-
sults of the ABX test for the baseline model show that T-SER
was much better than T-GST, and there is a significant differ-
ence. This result proves that using the sentiment classification
task in the pre-train model is necessary. Comparing T-G-S and
T-S-G, refining the model with BC instead of ESD at the final
step could improve the emotional synthesis model performance.

In summary, using explicit and implicit information learned
from audio and text can more accurately model emotional repre-
sentations. In addition, the semi-supervised training algorithm
can reduce the problem of lankness of annotated datasets. Eval-
uations showed that our proposed model could synthesize emo-
tional speech with more natural and expressive. We present
synthetic samples at https://xuyouning.github.io/
ESS/demo.html

4. Conclusions
Emotional speech synthesis is challenging due to labeled data
sparsity. In addition, there is much more sentiment text and ex-
pressive speech data than annotated emotional speech dataset.
In this paper, we propose a novel model to improve emotional
speech synthesis quality by learning explicit and implicit rep-
resentations with semi-supervised learning. In addition to ex-
plicit emotional representations, we propose an implicit senti-
ment representations learning method based on the graph neu-
ral network, considering dependency relations of a sentence
and text sentiment classification (TSC) task. For the lack of
emotion-annotated datasets, we leverage large amounts of ex-
pressive datasets to reinforce training the proposed model with
semi-supervised learning. Experiments show that the proposed
method can improve the naturalness and expressiveness of syn-
thetic speech and is better than the baseline model.
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